| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapfffth | Structured version Visualization version GIF version | ||
| Description: The swap functor is a fully faithful functor. (Contributed by Zhi Wang, 8-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapfid.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| swapfid.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| swapfid.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapfid.t | ⊢ 𝑇 = (𝐷 ×c 𝐶) |
| swapfid.o | ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
| Ref | Expression |
|---|---|
| swapfffth | ⊢ (𝜑 → 𝑂((𝑆 Full 𝑇) ∩ (𝑆 Faith 𝑇))𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapfid.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | swapfid.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 3 | swapfid.s | . . 3 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 4 | swapfid.t | . . 3 ⊢ 𝑇 = (𝐷 ×c 𝐶) | |
| 5 | swapfid.o | . . 3 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) | |
| 6 | 1, 2, 3, 4, 5 | swapffunc 49005 | . 2 ⊢ (𝜑 → 𝑂(𝑆 Func 𝑇)𝑃) |
| 7 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
| 8 | eqid 2734 | . . . 4 ⊢ (Hom ‘𝑆) = (Hom ‘𝑆) | |
| 9 | eqid 2734 | . . . 4 ⊢ (Hom ‘𝑇) = (Hom ‘𝑇) | |
| 10 | eqid 2734 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 11 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆)) | |
| 12 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆)) | |
| 13 | 7, 3, 4, 8, 9, 10, 11, 12 | swapf2f1oa 49000 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)–1-1-onto→((𝑂‘𝑥)(Hom ‘𝑇)(𝑂‘𝑦))) |
| 14 | 13 | ralrimivva 3185 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)–1-1-onto→((𝑂‘𝑥)(Hom ‘𝑇)(𝑂‘𝑦))) |
| 15 | 10, 8, 9 | isffth2 17916 | . 2 ⊢ (𝑂((𝑆 Full 𝑇) ∩ (𝑆 Faith 𝑇))𝑃 ↔ (𝑂(𝑆 Func 𝑇)𝑃 ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)–1-1-onto→((𝑂‘𝑥)(Hom ‘𝑇)(𝑂‘𝑦)))) |
| 16 | 6, 14, 15 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑂((𝑆 Full 𝑇) ∩ (𝑆 Faith 𝑇))𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∩ cin 3923 〈cop 4605 class class class wbr 5116 –1-1-onto→wf1o 6526 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 Hom chom 17267 Catccat 17661 Func cfunc 17852 Full cful 17902 Faith cfth 17903 ×c cxpc 18165 swapFcswapf 48982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-map 8836 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-fz 13514 df-struct 17151 df-slot 17186 df-ndx 17198 df-base 17214 df-hom 17280 df-cco 17281 df-cat 17665 df-cid 17666 df-func 17856 df-full 17904 df-fth 17905 df-xpc 18169 df-swapf 48983 |
| This theorem is referenced by: swapfiso 49008 |
| Copyright terms: Public domain | W3C validator |