| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zdend | Structured version Visualization version GIF version | ||
| Description: Denominator of an integer. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| znumd.1 | ⊢ (𝜑 → 𝑍 ∈ ℤ) |
| Ref | Expression |
|---|---|
| zdend | ⊢ (𝜑 → (denom‘𝑍) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znumd.1 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ ℤ) | |
| 2 | zq 12977 | . . . 4 ⊢ (𝑍 ∈ ℤ → 𝑍 ∈ ℚ) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑍 ∈ ℚ) |
| 4 | 1nn 12258 | . . . 4 ⊢ 1 ∈ ℕ | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ ℕ) |
| 6 | gcd1 16546 | . . . 4 ⊢ (𝑍 ∈ ℤ → (𝑍 gcd 1) = 1) | |
| 7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝑍 gcd 1) = 1) |
| 8 | 1 | zcnd 12705 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ℂ) |
| 9 | 8 | div1d 12016 | . . . 4 ⊢ (𝜑 → (𝑍 / 1) = 𝑍) |
| 10 | 9 | eqcomd 2740 | . . 3 ⊢ (𝜑 → 𝑍 = (𝑍 / 1)) |
| 11 | qnumdenbi 16762 | . . . 4 ⊢ ((𝑍 ∈ ℚ ∧ 𝑍 ∈ ℤ ∧ 1 ∈ ℕ) → (((𝑍 gcd 1) = 1 ∧ 𝑍 = (𝑍 / 1)) ↔ ((numer‘𝑍) = 𝑍 ∧ (denom‘𝑍) = 1))) | |
| 12 | 11 | biimpa 476 | . . 3 ⊢ (((𝑍 ∈ ℚ ∧ 𝑍 ∈ ℤ ∧ 1 ∈ ℕ) ∧ ((𝑍 gcd 1) = 1 ∧ 𝑍 = (𝑍 / 1))) → ((numer‘𝑍) = 𝑍 ∧ (denom‘𝑍) = 1)) |
| 13 | 3, 1, 5, 7, 10, 12 | syl32anc 1379 | . 2 ⊢ (𝜑 → ((numer‘𝑍) = 𝑍 ∧ (denom‘𝑍) = 1)) |
| 14 | 13 | simprd 495 | 1 ⊢ (𝜑 → (denom‘𝑍) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6540 (class class class)co 7412 1c1 11137 / cdiv 11901 ℕcn 12247 ℤcz 12595 ℚcq 12971 gcd cgcd 16512 numercnumer 16751 denomcdenom 16752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-n0 12509 df-z 12596 df-uz 12860 df-q 12972 df-rp 13016 df-fl 13813 df-mod 13891 df-seq 14024 df-exp 14084 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-dvds 16272 df-gcd 16513 df-numer 16753 df-denom 16754 |
| This theorem is referenced by: zringfrac 33508 |
| Copyright terms: Public domain | W3C validator |