MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numdenexp Structured version   Visualization version   GIF version

Theorem numdenexp 16673
Description: Elevating a rational number to the power 𝑁 has the same effect on its canonical components. Same as numdensq 16667, extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.)
Assertion
Ref Expression
numdenexp ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴𝑁)) = ((denom‘𝐴)↑𝑁)))

Proof of Theorem numdenexp
StepHypRef Expression
1 qnumdencoprm 16658 . . . . 5 (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1)
21adantr 480 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴) gcd (denom‘𝐴)) = 1)
32oveq1d 7367 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (1↑𝑁))
4 qnumcl 16653 . . . . 5 (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ)
54adantr 480 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘𝐴) ∈ ℤ)
6 qdencl 16654 . . . . . 6 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ)
76adantr 480 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℕ)
87nnzd 12501 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℤ)
9 simpr 484 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
10 zexpgcd 16478 . . . 4 (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)))
115, 8, 9, 10syl3anc 1373 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)))
12 nn0z 12499 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13 1exp 14000 . . . 4 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
149, 12, 133syl 18 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (1↑𝑁) = 1)
153, 11, 143eqtr3d 2776 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1)
16 qeqnumdivden 16659 . . . . 5 (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴)))
1716adantr 480 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → 𝐴 = ((numer‘𝐴) / (denom‘𝐴)))
1817oveq1d 7367 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) = (((numer‘𝐴) / (denom‘𝐴))↑𝑁))
195zcnd 12584 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘𝐴) ∈ ℂ)
207nncnd 12148 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℂ)
217nnne0d 12182 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ≠ 0)
2219, 20, 21, 9expdivd 14069 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) / (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁)))
2318, 22eqtrd 2768 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁)))
24 qexpcl 13986 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℚ)
25 zexpcl 13985 . . . 4 (((numer‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴)↑𝑁) ∈ ℤ)
264, 25sylan 580 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴)↑𝑁) ∈ ℤ)
277, 9nnexpcld 14154 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((denom‘𝐴)↑𝑁) ∈ ℕ)
28 qnumdenbi 16657 . . 3 (((𝐴𝑁) ∈ ℚ ∧ ((numer‘𝐴)↑𝑁) ∈ ℤ ∧ ((denom‘𝐴)↑𝑁) ∈ ℕ) → (((((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1 ∧ (𝐴𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) ↔ ((numer‘(𝐴𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴𝑁)) = ((denom‘𝐴)↑𝑁))))
2924, 26, 27, 28syl3anc 1373 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1 ∧ (𝐴𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) ↔ ((numer‘(𝐴𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴𝑁)) = ((denom‘𝐴)↑𝑁))))
3015, 23, 29mpbi2and 712 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴𝑁)) = ((denom‘𝐴)↑𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  1c1 11014   / cdiv 11781  cn 12132  0cn0 12388  cz 12475  cq 12848  cexp 13970   gcd cgcd 16407  numercnumer 16646  denomcdenom 16647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-gcd 16408  df-numer 16648  df-denom 16649
This theorem is referenced by:  numexp  16674  denexp  16675
  Copyright terms: Public domain W3C validator