![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > numdenexp | Structured version Visualization version GIF version |
Description: numdensq 16717 extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.) |
Ref | Expression |
---|---|
numdenexp | ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qnumdencoprm 16708 | . . . . 5 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) |
3 | 2 | oveq1d 7429 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (1↑𝑁)) |
4 | qnumcl 16703 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘𝐴) ∈ ℤ) |
6 | qdencl 16704 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℕ) |
8 | 7 | nnzd 12607 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℤ) |
9 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
10 | zexpgcd 41818 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁))) | |
11 | 5, 8, 9, 10 | syl3anc 1369 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁))) |
12 | nn0z 12605 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
13 | 1exp 14080 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
14 | 9, 12, 13 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (1↑𝑁) = 1) |
15 | 3, 11, 14 | 3eqtr3d 2775 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1) |
16 | qeqnumdivden 16709 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) |
18 | 17 | oveq1d 7429 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (((numer‘𝐴) / (denom‘𝐴))↑𝑁)) |
19 | 5 | zcnd 12689 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘𝐴) ∈ ℂ) |
20 | 7 | nncnd 12250 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℂ) |
21 | 7 | nnne0d 12284 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ≠ 0) |
22 | 19, 20, 21, 9 | expdivd 14148 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) / (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) |
23 | 18, 22 | eqtrd 2767 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) |
24 | qexpcl 14066 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℚ) | |
25 | zexpcl 14065 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴)↑𝑁) ∈ ℤ) | |
26 | 4, 25 | sylan 579 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴)↑𝑁) ∈ ℤ) |
27 | 7, 9 | nnexpcld 14231 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((denom‘𝐴)↑𝑁) ∈ ℕ) |
28 | qnumdenbi 16707 | . . 3 ⊢ (((𝐴↑𝑁) ∈ ℚ ∧ ((numer‘𝐴)↑𝑁) ∈ ℤ ∧ ((denom‘𝐴)↑𝑁) ∈ ℕ) → (((((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1 ∧ (𝐴↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) ↔ ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁)))) | |
29 | 24, 26, 27, 28 | syl3anc 1369 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1 ∧ (𝐴↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) ↔ ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁)))) |
30 | 15, 23, 29 | mpbi2and 711 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 1c1 11131 / cdiv 11893 ℕcn 12234 ℕ0cn0 12494 ℤcz 12580 ℚcq 12954 ↑cexp 14050 gcd cgcd 16460 numercnumer 16696 denomcdenom 16697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-q 12955 df-rp 12999 df-fl 13781 df-mod 13859 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-dvds 16223 df-gcd 16461 df-numer 16698 df-denom 16699 |
This theorem is referenced by: numexp 41820 denexp 41821 |
Copyright terms: Public domain | W3C validator |