| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numdenexp | Structured version Visualization version GIF version | ||
| Description: Elevating a rational number to the power 𝑁 has the same effect on its canonical components. Same as numdensq 16667, extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.) |
| Ref | Expression |
|---|---|
| numdenexp | ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qnumdencoprm 16658 | . . . . 5 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) |
| 3 | 2 | oveq1d 7367 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (1↑𝑁)) |
| 4 | qnumcl 16653 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘𝐴) ∈ ℤ) |
| 6 | qdencl 16654 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℕ) |
| 8 | 7 | nnzd 12501 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℤ) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 10 | zexpgcd 16478 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁))) | |
| 11 | 5, 8, 9, 10 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁))) |
| 12 | nn0z 12499 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 13 | 1exp 14000 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
| 14 | 9, 12, 13 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (1↑𝑁) = 1) |
| 15 | 3, 11, 14 | 3eqtr3d 2776 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1) |
| 16 | qeqnumdivden 16659 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) |
| 18 | 17 | oveq1d 7367 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (((numer‘𝐴) / (denom‘𝐴))↑𝑁)) |
| 19 | 5 | zcnd 12584 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘𝐴) ∈ ℂ) |
| 20 | 7 | nncnd 12148 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℂ) |
| 21 | 7 | nnne0d 12182 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ≠ 0) |
| 22 | 19, 20, 21, 9 | expdivd 14069 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) / (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) |
| 23 | 18, 22 | eqtrd 2768 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) |
| 24 | qexpcl 13986 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℚ) | |
| 25 | zexpcl 13985 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴)↑𝑁) ∈ ℤ) | |
| 26 | 4, 25 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴)↑𝑁) ∈ ℤ) |
| 27 | 7, 9 | nnexpcld 14154 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((denom‘𝐴)↑𝑁) ∈ ℕ) |
| 28 | qnumdenbi 16657 | . . 3 ⊢ (((𝐴↑𝑁) ∈ ℚ ∧ ((numer‘𝐴)↑𝑁) ∈ ℤ ∧ ((denom‘𝐴)↑𝑁) ∈ ℕ) → (((((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1 ∧ (𝐴↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) ↔ ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁)))) | |
| 29 | 24, 26, 27, 28 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1 ∧ (𝐴↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) ↔ ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁)))) |
| 30 | 15, 23, 29 | mpbi2and 712 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 1c1 11014 / cdiv 11781 ℕcn 12132 ℕ0cn0 12388 ℤcz 12475 ℚcq 12848 ↑cexp 13970 gcd cgcd 16407 numercnumer 16646 denomcdenom 16647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-gcd 16408 df-numer 16648 df-denom 16649 |
| This theorem is referenced by: numexp 16674 denexp 16675 |
| Copyright terms: Public domain | W3C validator |