Step | Hyp | Ref
| Expression |
1 | | qnumdencoprm 16681 |
. . . . 5
β’ (π΄ β β β
((numerβπ΄) gcd
(denomβπ΄)) =
1) |
2 | 1 | adantr 482 |
. . . 4
β’ ((π΄ β β β§ π β β0)
β ((numerβπ΄) gcd
(denomβπ΄)) =
1) |
3 | 2 | oveq1d 7424 |
. . 3
β’ ((π΄ β β β§ π β β0)
β (((numerβπ΄)
gcd (denomβπ΄))βπ) = (1βπ)) |
4 | | qnumcl 16676 |
. . . . 5
β’ (π΄ β β β
(numerβπ΄) β
β€) |
5 | 4 | adantr 482 |
. . . 4
β’ ((π΄ β β β§ π β β0)
β (numerβπ΄)
β β€) |
6 | | qdencl 16677 |
. . . . . 6
β’ (π΄ β β β
(denomβπ΄) β
β) |
7 | 6 | adantr 482 |
. . . . 5
β’ ((π΄ β β β§ π β β0)
β (denomβπ΄)
β β) |
8 | 7 | nnzd 12585 |
. . . 4
β’ ((π΄ β β β§ π β β0)
β (denomβπ΄)
β β€) |
9 | | simpr 486 |
. . . 4
β’ ((π΄ β β β§ π β β0)
β π β
β0) |
10 | | zexpgcd 41227 |
. . . 4
β’
(((numerβπ΄)
β β€ β§ (denomβπ΄) β β€ β§ π β β0) β
(((numerβπ΄) gcd
(denomβπ΄))βπ) = (((numerβπ΄)βπ) gcd ((denomβπ΄)βπ))) |
11 | 5, 8, 9, 10 | syl3anc 1372 |
. . 3
β’ ((π΄ β β β§ π β β0)
β (((numerβπ΄)
gcd (denomβπ΄))βπ) = (((numerβπ΄)βπ) gcd ((denomβπ΄)βπ))) |
12 | | nn0z 12583 |
. . . 4
β’ (π β β0
β π β
β€) |
13 | | 1exp 14057 |
. . . 4
β’ (π β β€ β
(1βπ) =
1) |
14 | 9, 12, 13 | 3syl 18 |
. . 3
β’ ((π΄ β β β§ π β β0)
β (1βπ) =
1) |
15 | 3, 11, 14 | 3eqtr3d 2781 |
. 2
β’ ((π΄ β β β§ π β β0)
β (((numerβπ΄)βπ) gcd ((denomβπ΄)βπ)) = 1) |
16 | | qeqnumdivden 16682 |
. . . . 5
β’ (π΄ β β β π΄ = ((numerβπ΄) / (denomβπ΄))) |
17 | 16 | adantr 482 |
. . . 4
β’ ((π΄ β β β§ π β β0)
β π΄ =
((numerβπ΄) /
(denomβπ΄))) |
18 | 17 | oveq1d 7424 |
. . 3
β’ ((π΄ β β β§ π β β0)
β (π΄βπ) = (((numerβπ΄) / (denomβπ΄))βπ)) |
19 | 5 | zcnd 12667 |
. . . 4
β’ ((π΄ β β β§ π β β0)
β (numerβπ΄)
β β) |
20 | 7 | nncnd 12228 |
. . . 4
β’ ((π΄ β β β§ π β β0)
β (denomβπ΄)
β β) |
21 | 7 | nnne0d 12262 |
. . . 4
β’ ((π΄ β β β§ π β β0)
β (denomβπ΄) β
0) |
22 | 19, 20, 21, 9 | expdivd 14125 |
. . 3
β’ ((π΄ β β β§ π β β0)
β (((numerβπ΄) /
(denomβπ΄))βπ) = (((numerβπ΄)βπ) / ((denomβπ΄)βπ))) |
23 | 18, 22 | eqtrd 2773 |
. 2
β’ ((π΄ β β β§ π β β0)
β (π΄βπ) = (((numerβπ΄)βπ) / ((denomβπ΄)βπ))) |
24 | | qexpcl 14043 |
. . 3
β’ ((π΄ β β β§ π β β0)
β (π΄βπ) β
β) |
25 | | zexpcl 14042 |
. . . 4
β’
(((numerβπ΄)
β β€ β§ π
β β0) β ((numerβπ΄)βπ) β β€) |
26 | 4, 25 | sylan 581 |
. . 3
β’ ((π΄ β β β§ π β β0)
β ((numerβπ΄)βπ) β β€) |
27 | 7, 9 | nnexpcld 14208 |
. . 3
β’ ((π΄ β β β§ π β β0)
β ((denomβπ΄)βπ) β β) |
28 | | qnumdenbi 16680 |
. . 3
β’ (((π΄βπ) β β β§ ((numerβπ΄)βπ) β β€ β§ ((denomβπ΄)βπ) β β) β
(((((numerβπ΄)βπ) gcd ((denomβπ΄)βπ)) = 1 β§ (π΄βπ) = (((numerβπ΄)βπ) / ((denomβπ΄)βπ))) β ((numerβ(π΄βπ)) = ((numerβπ΄)βπ) β§ (denomβ(π΄βπ)) = ((denomβπ΄)βπ)))) |
29 | 24, 26, 27, 28 | syl3anc 1372 |
. 2
β’ ((π΄ β β β§ π β β0)
β (((((numerβπ΄)βπ) gcd ((denomβπ΄)βπ)) = 1 β§ (π΄βπ) = (((numerβπ΄)βπ) / ((denomβπ΄)βπ))) β ((numerβ(π΄βπ)) = ((numerβπ΄)βπ) β§ (denomβ(π΄βπ)) = ((denomβπ΄)βπ)))) |
30 | 15, 23, 29 | mpbi2and 711 |
1
β’ ((π΄ β β β§ π β β0)
β ((numerβ(π΄βπ)) = ((numerβπ΄)βπ) β§ (denomβ(π΄βπ)) = ((denomβπ΄)βπ))) |