Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > numdenexp | Structured version Visualization version GIF version |
Description: numdensq 16139 extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.) |
Ref | Expression |
---|---|
numdenexp | ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qnumdencoprm 16130 | . . . . 5 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | |
2 | 1 | adantr 485 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) |
3 | 2 | oveq1d 7163 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (1↑𝑁)) |
4 | qnumcl 16125 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
5 | 4 | adantr 485 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘𝐴) ∈ ℤ) |
6 | qdencl 16126 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
7 | 6 | adantr 485 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℕ) |
8 | 7 | nnzd 12115 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℤ) |
9 | simpr 489 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
10 | zexpgcd 39823 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁))) | |
11 | 5, 8, 9, 10 | syl3anc 1369 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁))) |
12 | nn0z 12034 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
13 | 1exp 13498 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
14 | 9, 12, 13 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (1↑𝑁) = 1) |
15 | 3, 11, 14 | 3eqtr3d 2802 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1) |
16 | qeqnumdivden 16131 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
17 | 16 | adantr 485 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) |
18 | 17 | oveq1d 7163 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (((numer‘𝐴) / (denom‘𝐴))↑𝑁)) |
19 | 5 | zcnd 12117 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘𝐴) ∈ ℂ) |
20 | 7 | nncnd 11680 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℂ) |
21 | 7 | nnne0d 11714 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ≠ 0) |
22 | 19, 20, 21, 9 | expdivd 13564 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) / (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) |
23 | 18, 22 | eqtrd 2794 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) |
24 | qexpcl 13485 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℚ) | |
25 | zexpcl 13484 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴)↑𝑁) ∈ ℤ) | |
26 | 4, 25 | sylan 584 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴)↑𝑁) ∈ ℤ) |
27 | 7, 9 | nnexpcld 13646 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((denom‘𝐴)↑𝑁) ∈ ℕ) |
28 | qnumdenbi 16129 | . . 3 ⊢ (((𝐴↑𝑁) ∈ ℚ ∧ ((numer‘𝐴)↑𝑁) ∈ ℤ ∧ ((denom‘𝐴)↑𝑁) ∈ ℕ) → (((((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1 ∧ (𝐴↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) ↔ ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁)))) | |
29 | 24, 26, 27, 28 | syl3anc 1369 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1 ∧ (𝐴↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) ↔ ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁)))) |
30 | 15, 23, 29 | mpbi2and 712 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ‘cfv 6333 (class class class)co 7148 1c1 10566 / cdiv 11325 ℕcn 11664 ℕ0cn0 11924 ℤcz 12010 ℚcq 12378 ↑cexp 13469 gcd cgcd 15883 numercnumer 16118 denomcdenom 16119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 ax-pre-sup 10643 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-1st 7691 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-sup 8929 df-inf 8930 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-div 11326 df-nn 11665 df-2 11727 df-3 11728 df-n0 11925 df-z 12011 df-uz 12273 df-q 12379 df-rp 12421 df-fl 13201 df-mod 13277 df-seq 13409 df-exp 13470 df-cj 14496 df-re 14497 df-im 14498 df-sqrt 14632 df-abs 14633 df-dvds 15646 df-gcd 15884 df-numer 16120 df-denom 16121 |
This theorem is referenced by: numexp 39825 denexp 39826 |
Copyright terms: Public domain | W3C validator |