| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numdenexp | Structured version Visualization version GIF version | ||
| Description: Elevating a rational number to the power 𝑁 has the same effect on its canonical components. Same as numdensq 16683, extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.) |
| Ref | Expression |
|---|---|
| numdenexp | ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qnumdencoprm 16674 | . . . . 5 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) |
| 3 | 2 | oveq1d 7368 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (1↑𝑁)) |
| 4 | qnumcl 16669 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘𝐴) ∈ ℤ) |
| 6 | qdencl 16670 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℕ) |
| 8 | 7 | nnzd 12516 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℤ) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 10 | zexpgcd 16494 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁))) | |
| 11 | 5, 8, 9, 10 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁))) |
| 12 | nn0z 12514 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 13 | 1exp 14016 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
| 14 | 9, 12, 13 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (1↑𝑁) = 1) |
| 15 | 3, 11, 14 | 3eqtr3d 2772 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1) |
| 16 | qeqnumdivden 16675 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) |
| 18 | 17 | oveq1d 7368 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (((numer‘𝐴) / (denom‘𝐴))↑𝑁)) |
| 19 | 5 | zcnd 12599 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘𝐴) ∈ ℂ) |
| 20 | 7 | nncnd 12162 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℂ) |
| 21 | 7 | nnne0d 12196 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ≠ 0) |
| 22 | 19, 20, 21, 9 | expdivd 14085 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) / (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) |
| 23 | 18, 22 | eqtrd 2764 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) |
| 24 | qexpcl 14002 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℚ) | |
| 25 | zexpcl 14001 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴)↑𝑁) ∈ ℤ) | |
| 26 | 4, 25 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴)↑𝑁) ∈ ℤ) |
| 27 | 7, 9 | nnexpcld 14170 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((denom‘𝐴)↑𝑁) ∈ ℕ) |
| 28 | qnumdenbi 16673 | . . 3 ⊢ (((𝐴↑𝑁) ∈ ℚ ∧ ((numer‘𝐴)↑𝑁) ∈ ℤ ∧ ((denom‘𝐴)↑𝑁) ∈ ℕ) → (((((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1 ∧ (𝐴↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) ↔ ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁)))) | |
| 29 | 24, 26, 27, 28 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1 ∧ (𝐴↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) ↔ ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁)))) |
| 30 | 15, 23, 29 | mpbi2and 712 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴↑𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴↑𝑁)) = ((denom‘𝐴)↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 1c1 11029 / cdiv 11795 ℕcn 12146 ℕ0cn0 12402 ℤcz 12489 ℚcq 12867 ↑cexp 13986 gcd cgcd 16423 numercnumer 16662 denomcdenom 16663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-dvds 16182 df-gcd 16424 df-numer 16664 df-denom 16665 |
| This theorem is referenced by: numexp 16690 denexp 16691 |
| Copyright terms: Public domain | W3C validator |