Mathbox for Steven Nguyen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  numdenexp Structured version   Visualization version   GIF version

Theorem numdenexp 39824
 Description: numdensq 16139 extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.)
Assertion
Ref Expression
numdenexp ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴𝑁)) = ((denom‘𝐴)↑𝑁)))

Proof of Theorem numdenexp
StepHypRef Expression
1 qnumdencoprm 16130 . . . . 5 (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1)
21adantr 485 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴) gcd (denom‘𝐴)) = 1)
32oveq1d 7163 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (1↑𝑁))
4 qnumcl 16125 . . . . 5 (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ)
54adantr 485 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘𝐴) ∈ ℤ)
6 qdencl 16126 . . . . . 6 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ)
76adantr 485 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℕ)
87nnzd 12115 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℤ)
9 simpr 489 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
10 zexpgcd 39823 . . . 4 (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)))
115, 8, 9, 10syl3anc 1369 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) gcd (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)))
12 nn0z 12034 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13 1exp 13498 . . . 4 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
149, 12, 133syl 18 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (1↑𝑁) = 1)
153, 11, 143eqtr3d 2802 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1)
16 qeqnumdivden 16131 . . . . 5 (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴)))
1716adantr 485 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → 𝐴 = ((numer‘𝐴) / (denom‘𝐴)))
1817oveq1d 7163 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) = (((numer‘𝐴) / (denom‘𝐴))↑𝑁))
195zcnd 12117 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘𝐴) ∈ ℂ)
207nncnd 11680 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ∈ ℂ)
217nnne0d 11714 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘𝐴) ≠ 0)
2219, 20, 21, 9expdivd 13564 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((numer‘𝐴) / (denom‘𝐴))↑𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁)))
2318, 22eqtrd 2794 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁)))
24 qexpcl 13485 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℚ)
25 zexpcl 13484 . . . 4 (((numer‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴)↑𝑁) ∈ ℤ)
264, 25sylan 584 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘𝐴)↑𝑁) ∈ ℤ)
277, 9nnexpcld 13646 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((denom‘𝐴)↑𝑁) ∈ ℕ)
28 qnumdenbi 16129 . . 3 (((𝐴𝑁) ∈ ℚ ∧ ((numer‘𝐴)↑𝑁) ∈ ℤ ∧ ((denom‘𝐴)↑𝑁) ∈ ℕ) → (((((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1 ∧ (𝐴𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) ↔ ((numer‘(𝐴𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴𝑁)) = ((denom‘𝐴)↑𝑁))))
2924, 26, 27, 28syl3anc 1369 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (((((numer‘𝐴)↑𝑁) gcd ((denom‘𝐴)↑𝑁)) = 1 ∧ (𝐴𝑁) = (((numer‘𝐴)↑𝑁) / ((denom‘𝐴)↑𝑁))) ↔ ((numer‘(𝐴𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴𝑁)) = ((denom‘𝐴)↑𝑁))))
3015, 23, 29mpbi2and 712 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴𝑁)) = ((denom‘𝐴)↑𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112  ‘cfv 6333  (class class class)co 7148  1c1 10566   / cdiv 11325  ℕcn 11664  ℕ0cn0 11924  ℤcz 12010  ℚcq 12378  ↑cexp 13469   gcd cgcd 15883  numercnumer 16118  denomcdenom 16119 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7578  df-1st 7691  df-2nd 7692  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-er 8297  df-en 8526  df-dom 8527  df-sdom 8528  df-sup 8929  df-inf 8930  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-n0 11925  df-z 12011  df-uz 12273  df-q 12379  df-rp 12421  df-fl 13201  df-mod 13277  df-seq 13409  df-exp 13470  df-cj 14496  df-re 14497  df-im 14498  df-sqrt 14632  df-abs 14633  df-dvds 15646  df-gcd 15884  df-numer 16120  df-denom 16121 This theorem is referenced by:  numexp  39825  denexp  39826
 Copyright terms: Public domain W3C validator