ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem14 GIF version

Theorem 4sqlem14 12842
Description: Lemma for 4sq 12848. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
4sq.m (𝜑𝑀 ∈ (ℤ‘2))
4sq.a (𝜑𝐴 ∈ ℤ)
4sq.b (𝜑𝐵 ∈ ℤ)
4sq.c (𝜑𝐶 ∈ ℤ)
4sq.d (𝜑𝐷 ∈ ℤ)
4sq.e 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.f 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.g 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.h 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.r 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
4sq.p (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
Assertion
Ref Expression
4sqlem14 (𝜑𝑅 ∈ ℕ0)
Distinct variable groups:   𝑛,𝑁   𝑃,𝑖,𝑛,𝑤,𝑥,𝑦,𝑧   𝑆,𝑖,𝑛   𝑇,𝑖   𝜑,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑛)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem14
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 4sq.r . 2 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
2 4sq.6 . . . . . . . . 9 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
32ssrab3 3287 . . . . . . . 8 𝑇 ⊆ ℕ
4 4sq.7 . . . . . . . . 9 𝑀 = inf(𝑇, ℝ, < )
5 4sqlem11.1 . . . . . . . . . . . 12 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
6 4sq.2 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
7 4sq.3 . . . . . . . . . . . 12 (𝜑𝑃 = ((2 · 𝑁) + 1))
8 4sq.4 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
9 4sq.5 . . . . . . . . . . . 12 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
105, 6, 7, 8, 9, 2, 44sqlem13m 12841 . . . . . . . . . . 11 (𝜑 → (∃𝑗 𝑗𝑇𝑀 < 𝑃))
1110simpld 112 . . . . . . . . . 10 (𝜑 → ∃𝑗 𝑗𝑇)
12 1zzd 9434 . . . . . . . . . . 11 ((𝜑𝑗𝑇) → 1 ∈ ℤ)
13 nnuz 9719 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1413rabeqi 2769 . . . . . . . . . . . 12 {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} = {𝑖 ∈ (ℤ‘1) ∣ (𝑖 · 𝑃) ∈ 𝑆}
152, 14eqtri 2228 . . . . . . . . . . 11 𝑇 = {𝑖 ∈ (ℤ‘1) ∣ (𝑖 · 𝑃) ∈ 𝑆}
16 simpr 110 . . . . . . . . . . 11 ((𝜑𝑗𝑇) → 𝑗𝑇)
17 elfznn 10211 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑗) → 𝑖 ∈ ℕ)
1817adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → 𝑖 ∈ ℕ)
19 prmnn 12547 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
208, 19syl 14 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ)
2120ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → 𝑃 ∈ ℕ)
2218, 21nnmulcld 9120 . . . . . . . . . . . . 13 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → (𝑖 · 𝑃) ∈ ℕ)
2322nnnn0d 9383 . . . . . . . . . . . 12 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → (𝑖 · 𝑃) ∈ ℕ0)
2454sqlemsdc 12838 . . . . . . . . . . . 12 ((𝑖 · 𝑃) ∈ ℕ0DECID (𝑖 · 𝑃) ∈ 𝑆)
2523, 24syl 14 . . . . . . . . . . 11 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → DECID (𝑖 · 𝑃) ∈ 𝑆)
2612, 15, 16, 25infssuzcldc 10415 . . . . . . . . . 10 ((𝜑𝑗𝑇) → inf(𝑇, ℝ, < ) ∈ 𝑇)
2711, 26exlimddv 1923 . . . . . . . . 9 (𝜑 → inf(𝑇, ℝ, < ) ∈ 𝑇)
284, 27eqeltrid 2294 . . . . . . . 8 (𝜑𝑀𝑇)
293, 28sselid 3199 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
3029nnzd 9529 . . . . . 6 (𝜑𝑀 ∈ ℤ)
31 prmz 12548 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
328, 31syl 14 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
3330, 32zmulcld 9536 . . . . . 6 (𝜑 → (𝑀 · 𝑃) ∈ ℤ)
34 4sq.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℤ)
35 4sq.e . . . . . . . . . . . . 13 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
3634, 29, 354sqlem5 12820 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℤ ∧ ((𝐴𝐸) / 𝑀) ∈ ℤ))
3736simpld 112 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℤ)
38 zsqcl2 10799 . . . . . . . . . . 11 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℕ0)
3937, 38syl 14 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℕ0)
40 4sq.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℤ)
41 4sq.f . . . . . . . . . . . . 13 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4240, 29, 414sqlem5 12820 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ℤ ∧ ((𝐵𝐹) / 𝑀) ∈ ℤ))
4342simpld 112 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℤ)
44 zsqcl2 10799 . . . . . . . . . . 11 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℕ0)
4543, 44syl 14 . . . . . . . . . 10 (𝜑 → (𝐹↑2) ∈ ℕ0)
4639, 45nn0addcld 9387 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ0)
4746nn0zd 9528 . . . . . . . 8 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
48 4sq.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℤ)
49 4sq.g . . . . . . . . . . . . 13 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
5048, 29, 494sqlem5 12820 . . . . . . . . . . . 12 (𝜑 → (𝐺 ∈ ℤ ∧ ((𝐶𝐺) / 𝑀) ∈ ℤ))
5150simpld 112 . . . . . . . . . . 11 (𝜑𝐺 ∈ ℤ)
52 zsqcl2 10799 . . . . . . . . . . 11 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℕ0)
5351, 52syl 14 . . . . . . . . . 10 (𝜑 → (𝐺↑2) ∈ ℕ0)
54 4sq.d . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℤ)
55 4sq.h . . . . . . . . . . . . 13 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
5654, 29, 554sqlem5 12820 . . . . . . . . . . . 12 (𝜑 → (𝐻 ∈ ℤ ∧ ((𝐷𝐻) / 𝑀) ∈ ℤ))
5756simpld 112 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℤ)
58 zsqcl2 10799 . . . . . . . . . . 11 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℕ0)
5957, 58syl 14 . . . . . . . . . 10 (𝜑 → (𝐻↑2) ∈ ℕ0)
6053, 59nn0addcld 9387 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℕ0)
6160nn0zd 9528 . . . . . . . 8 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℤ)
6247, 61zaddcld 9534 . . . . . . 7 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
6333, 62zsubcld 9535 . . . . . 6 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) ∈ ℤ)
64 dvdsmul1 12239 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑃))
6530, 32, 64syl2anc 411 . . . . . 6 (𝜑𝑀 ∥ (𝑀 · 𝑃))
66 zsqcl 10792 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
6734, 66syl 14 . . . . . . . . . 10 (𝜑 → (𝐴↑2) ∈ ℤ)
68 zsqcl 10792 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
6940, 68syl 14 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℤ)
7067, 69zaddcld 9534 . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℤ)
7170, 47zsubcld 9535 . . . . . . . 8 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) ∈ ℤ)
72 zsqcl 10792 . . . . . . . . . . 11 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
7348, 72syl 14 . . . . . . . . . 10 (𝜑 → (𝐶↑2) ∈ ℤ)
74 zsqcl 10792 . . . . . . . . . . 11 (𝐷 ∈ ℤ → (𝐷↑2) ∈ ℤ)
7554, 74syl 14 . . . . . . . . . 10 (𝜑 → (𝐷↑2) ∈ ℤ)
7673, 75zaddcld 9534 . . . . . . . . 9 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
7776, 61zsubcld 9535 . . . . . . . 8 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
7839nn0zd 9528 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℤ)
7967, 78zsubcld 9535 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) − (𝐸↑2)) ∈ ℤ)
8045nn0zd 9528 . . . . . . . . . . 11 (𝜑 → (𝐹↑2) ∈ ℤ)
8169, 80zsubcld 9535 . . . . . . . . . 10 (𝜑 → ((𝐵↑2) − (𝐹↑2)) ∈ ℤ)
8234, 29, 354sqlem8 12823 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐸↑2)))
8340, 29, 414sqlem8 12823 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐵↑2) − (𝐹↑2)))
8430, 79, 81, 82, 83dvds2addd 12255 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐴↑2) − (𝐸↑2)) + ((𝐵↑2) − (𝐹↑2))))
8534zcnd 9531 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
8685sqcld 10853 . . . . . . . . . 10 (𝜑 → (𝐴↑2) ∈ ℂ)
8740zcnd 9531 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
8887sqcld 10853 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℂ)
8937zcnd 9531 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
9089sqcld 10853 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℂ)
9143zcnd 9531 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℂ)
9291sqcld 10853 . . . . . . . . . 10 (𝜑 → (𝐹↑2) ∈ ℂ)
9386, 88, 90, 92addsub4d 8465 . . . . . . . . 9 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) = (((𝐴↑2) − (𝐸↑2)) + ((𝐵↑2) − (𝐹↑2))))
9484, 93breqtrrd 4087 . . . . . . . 8 (𝜑𝑀 ∥ (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))))
9553nn0zd 9528 . . . . . . . . . . 11 (𝜑 → (𝐺↑2) ∈ ℤ)
9673, 95zsubcld 9535 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) − (𝐺↑2)) ∈ ℤ)
9759nn0zd 9528 . . . . . . . . . . 11 (𝜑 → (𝐻↑2) ∈ ℤ)
9875, 97zsubcld 9535 . . . . . . . . . 10 (𝜑 → ((𝐷↑2) − (𝐻↑2)) ∈ ℤ)
9948, 29, 494sqlem8 12823 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐶↑2) − (𝐺↑2)))
10054, 29, 554sqlem8 12823 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐷↑2) − (𝐻↑2)))
10130, 96, 98, 99, 100dvds2addd 12255 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐶↑2) − (𝐺↑2)) + ((𝐷↑2) − (𝐻↑2))))
10248zcnd 9531 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
103102sqcld 10853 . . . . . . . . . 10 (𝜑 → (𝐶↑2) ∈ ℂ)
10454zcnd 9531 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
105104sqcld 10853 . . . . . . . . . 10 (𝜑 → (𝐷↑2) ∈ ℂ)
10651zcnd 9531 . . . . . . . . . . 11 (𝜑𝐺 ∈ ℂ)
107106sqcld 10853 . . . . . . . . . 10 (𝜑 → (𝐺↑2) ∈ ℂ)
10857zcnd 9531 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℂ)
109108sqcld 10853 . . . . . . . . . 10 (𝜑 → (𝐻↑2) ∈ ℂ)
110103, 105, 107, 109addsub4d 8465 . . . . . . . . 9 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))) = (((𝐶↑2) − (𝐺↑2)) + ((𝐷↑2) − (𝐻↑2))))
111101, 110breqtrrd 4087 . . . . . . . 8 (𝜑𝑀 ∥ (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))))
11230, 71, 77, 94, 111dvds2addd 12255 . . . . . . 7 (𝜑𝑀 ∥ ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
113 4sq.p . . . . . . . . 9 (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
114113oveq1d 5982 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))))
11586, 88addcld 8127 . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℂ)
116103, 105addcld 8127 . . . . . . . . 9 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℂ)
11790, 92addcld 8127 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
118107, 109addcld 8127 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℂ)
119115, 116, 117, 118addsub4d 8465 . . . . . . . 8 (𝜑 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
120114, 119eqtrd 2240 . . . . . . 7 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
121112, 120breqtrrd 4087 . . . . . 6 (𝜑𝑀 ∥ ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))))
12230, 33, 63, 65, 121dvds2subd 12253 . . . . 5 (𝜑𝑀 ∥ ((𝑀 · 𝑃) − ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))))
12329nncnd 9085 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
12420nncnd 9085 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
125123, 124mulcld 8128 . . . . . 6 (𝜑 → (𝑀 · 𝑃) ∈ ℂ)
126117, 118addcld 8127 . . . . . 6 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℂ)
127125, 126nncand 8423 . . . . 5 (𝜑 → ((𝑀 · 𝑃) − ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
128122, 127breqtrd 4085 . . . 4 (𝜑𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
12929nnne0d 9116 . . . . 5 (𝜑𝑀 ≠ 0)
13046, 60nn0addcld 9387 . . . . . 6 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℕ0)
131130nn0zd 9528 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
132 dvdsval2 12216 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ) → (𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ↔ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ))
13330, 129, 131, 132syl3anc 1250 . . . 4 (𝜑 → (𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ↔ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ))
134128, 133mpbid 147 . . 3 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ)
135130nn0red 9384 . . . 4 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
136130nn0ge0d 9386 . . . 4 (𝜑 → 0 ≤ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
13729nnred 9084 . . . 4 (𝜑𝑀 ∈ ℝ)
13829nngt0d 9115 . . . 4 (𝜑 → 0 < 𝑀)
139 divge0 8981 . . . 4 ((((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ ∧ 0 ≤ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀))
140135, 136, 137, 138, 139syl22anc 1251 . . 3 (𝜑 → 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀))
141 elnn0z 9420 . . 3 (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℕ0 ↔ (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ ∧ 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)))
142134, 140, 141sylanbrc 417 . 2 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℕ0)
1431, 142eqeltrid 2294 1 (𝜑𝑅 ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wex 1516  wcel 2178  {cab 2193  wne 2378  wrex 2487  {crab 2490  wss 3174   class class class wbr 4059  cfv 5290  (class class class)co 5967  infcinf 7111  cr 7959  0cc0 7960  1c1 7961   + caddc 7963   · cmul 7965   < clt 8142  cle 8143  cmin 8278   / cdiv 8780  cn 9071  2c2 9122  0cn0 9330  cz 9407  cuz 9683  ...cfz 10165   mod cmo 10504  cexp 10720  cdvds 12213  cprime 12544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-2o 6526  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545  df-gz 12808
This theorem is referenced by:  4sqlem17  12845
  Copyright terms: Public domain W3C validator