ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem14 GIF version

Theorem 4sqlem14 12600
Description: Lemma for 4sq 12606. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
4sq.m (𝜑𝑀 ∈ (ℤ‘2))
4sq.a (𝜑𝐴 ∈ ℤ)
4sq.b (𝜑𝐵 ∈ ℤ)
4sq.c (𝜑𝐶 ∈ ℤ)
4sq.d (𝜑𝐷 ∈ ℤ)
4sq.e 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.f 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.g 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.h 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.r 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
4sq.p (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
Assertion
Ref Expression
4sqlem14 (𝜑𝑅 ∈ ℕ0)
Distinct variable groups:   𝑛,𝑁   𝑃,𝑖,𝑛,𝑤,𝑥,𝑦,𝑧   𝑆,𝑖,𝑛   𝑇,𝑖   𝜑,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑛)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem14
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 4sq.r . 2 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
2 4sq.6 . . . . . . . . 9 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
32ssrab3 3270 . . . . . . . 8 𝑇 ⊆ ℕ
4 4sq.7 . . . . . . . . 9 𝑀 = inf(𝑇, ℝ, < )
5 4sqlem11.1 . . . . . . . . . . . 12 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
6 4sq.2 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
7 4sq.3 . . . . . . . . . . . 12 (𝜑𝑃 = ((2 · 𝑁) + 1))
8 4sq.4 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
9 4sq.5 . . . . . . . . . . . 12 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
105, 6, 7, 8, 9, 2, 44sqlem13m 12599 . . . . . . . . . . 11 (𝜑 → (∃𝑗 𝑗𝑇𝑀 < 𝑃))
1110simpld 112 . . . . . . . . . 10 (𝜑 → ∃𝑗 𝑗𝑇)
12 1zzd 9372 . . . . . . . . . . 11 ((𝜑𝑗𝑇) → 1 ∈ ℤ)
13 nnuz 9656 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1413rabeqi 2756 . . . . . . . . . . . 12 {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} = {𝑖 ∈ (ℤ‘1) ∣ (𝑖 · 𝑃) ∈ 𝑆}
152, 14eqtri 2217 . . . . . . . . . . 11 𝑇 = {𝑖 ∈ (ℤ‘1) ∣ (𝑖 · 𝑃) ∈ 𝑆}
16 simpr 110 . . . . . . . . . . 11 ((𝜑𝑗𝑇) → 𝑗𝑇)
17 elfznn 10148 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑗) → 𝑖 ∈ ℕ)
1817adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → 𝑖 ∈ ℕ)
19 prmnn 12305 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
208, 19syl 14 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ)
2120ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → 𝑃 ∈ ℕ)
2218, 21nnmulcld 9058 . . . . . . . . . . . . 13 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → (𝑖 · 𝑃) ∈ ℕ)
2322nnnn0d 9321 . . . . . . . . . . . 12 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → (𝑖 · 𝑃) ∈ ℕ0)
2454sqlemsdc 12596 . . . . . . . . . . . 12 ((𝑖 · 𝑃) ∈ ℕ0DECID (𝑖 · 𝑃) ∈ 𝑆)
2523, 24syl 14 . . . . . . . . . . 11 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → DECID (𝑖 · 𝑃) ∈ 𝑆)
2612, 15, 16, 25infssuzcldc 10344 . . . . . . . . . 10 ((𝜑𝑗𝑇) → inf(𝑇, ℝ, < ) ∈ 𝑇)
2711, 26exlimddv 1913 . . . . . . . . 9 (𝜑 → inf(𝑇, ℝ, < ) ∈ 𝑇)
284, 27eqeltrid 2283 . . . . . . . 8 (𝜑𝑀𝑇)
293, 28sselid 3182 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
3029nnzd 9466 . . . . . 6 (𝜑𝑀 ∈ ℤ)
31 prmz 12306 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
328, 31syl 14 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
3330, 32zmulcld 9473 . . . . . 6 (𝜑 → (𝑀 · 𝑃) ∈ ℤ)
34 4sq.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℤ)
35 4sq.e . . . . . . . . . . . . 13 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
3634, 29, 354sqlem5 12578 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℤ ∧ ((𝐴𝐸) / 𝑀) ∈ ℤ))
3736simpld 112 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℤ)
38 zsqcl2 10728 . . . . . . . . . . 11 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℕ0)
3937, 38syl 14 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℕ0)
40 4sq.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℤ)
41 4sq.f . . . . . . . . . . . . 13 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4240, 29, 414sqlem5 12578 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ℤ ∧ ((𝐵𝐹) / 𝑀) ∈ ℤ))
4342simpld 112 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℤ)
44 zsqcl2 10728 . . . . . . . . . . 11 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℕ0)
4543, 44syl 14 . . . . . . . . . 10 (𝜑 → (𝐹↑2) ∈ ℕ0)
4639, 45nn0addcld 9325 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ0)
4746nn0zd 9465 . . . . . . . 8 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
48 4sq.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℤ)
49 4sq.g . . . . . . . . . . . . 13 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
5048, 29, 494sqlem5 12578 . . . . . . . . . . . 12 (𝜑 → (𝐺 ∈ ℤ ∧ ((𝐶𝐺) / 𝑀) ∈ ℤ))
5150simpld 112 . . . . . . . . . . 11 (𝜑𝐺 ∈ ℤ)
52 zsqcl2 10728 . . . . . . . . . . 11 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℕ0)
5351, 52syl 14 . . . . . . . . . 10 (𝜑 → (𝐺↑2) ∈ ℕ0)
54 4sq.d . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℤ)
55 4sq.h . . . . . . . . . . . . 13 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
5654, 29, 554sqlem5 12578 . . . . . . . . . . . 12 (𝜑 → (𝐻 ∈ ℤ ∧ ((𝐷𝐻) / 𝑀) ∈ ℤ))
5756simpld 112 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℤ)
58 zsqcl2 10728 . . . . . . . . . . 11 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℕ0)
5957, 58syl 14 . . . . . . . . . 10 (𝜑 → (𝐻↑2) ∈ ℕ0)
6053, 59nn0addcld 9325 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℕ0)
6160nn0zd 9465 . . . . . . . 8 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℤ)
6247, 61zaddcld 9471 . . . . . . 7 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
6333, 62zsubcld 9472 . . . . . 6 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) ∈ ℤ)
64 dvdsmul1 11997 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑃))
6530, 32, 64syl2anc 411 . . . . . 6 (𝜑𝑀 ∥ (𝑀 · 𝑃))
66 zsqcl 10721 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
6734, 66syl 14 . . . . . . . . . 10 (𝜑 → (𝐴↑2) ∈ ℤ)
68 zsqcl 10721 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
6940, 68syl 14 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℤ)
7067, 69zaddcld 9471 . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℤ)
7170, 47zsubcld 9472 . . . . . . . 8 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) ∈ ℤ)
72 zsqcl 10721 . . . . . . . . . . 11 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
7348, 72syl 14 . . . . . . . . . 10 (𝜑 → (𝐶↑2) ∈ ℤ)
74 zsqcl 10721 . . . . . . . . . . 11 (𝐷 ∈ ℤ → (𝐷↑2) ∈ ℤ)
7554, 74syl 14 . . . . . . . . . 10 (𝜑 → (𝐷↑2) ∈ ℤ)
7673, 75zaddcld 9471 . . . . . . . . 9 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
7776, 61zsubcld 9472 . . . . . . . 8 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
7839nn0zd 9465 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℤ)
7967, 78zsubcld 9472 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) − (𝐸↑2)) ∈ ℤ)
8045nn0zd 9465 . . . . . . . . . . 11 (𝜑 → (𝐹↑2) ∈ ℤ)
8169, 80zsubcld 9472 . . . . . . . . . 10 (𝜑 → ((𝐵↑2) − (𝐹↑2)) ∈ ℤ)
8234, 29, 354sqlem8 12581 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐸↑2)))
8340, 29, 414sqlem8 12581 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐵↑2) − (𝐹↑2)))
8430, 79, 81, 82, 83dvds2addd 12013 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐴↑2) − (𝐸↑2)) + ((𝐵↑2) − (𝐹↑2))))
8534zcnd 9468 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
8685sqcld 10782 . . . . . . . . . 10 (𝜑 → (𝐴↑2) ∈ ℂ)
8740zcnd 9468 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
8887sqcld 10782 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℂ)
8937zcnd 9468 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
9089sqcld 10782 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℂ)
9143zcnd 9468 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℂ)
9291sqcld 10782 . . . . . . . . . 10 (𝜑 → (𝐹↑2) ∈ ℂ)
9386, 88, 90, 92addsub4d 8403 . . . . . . . . 9 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) = (((𝐴↑2) − (𝐸↑2)) + ((𝐵↑2) − (𝐹↑2))))
9484, 93breqtrrd 4062 . . . . . . . 8 (𝜑𝑀 ∥ (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))))
9553nn0zd 9465 . . . . . . . . . . 11 (𝜑 → (𝐺↑2) ∈ ℤ)
9673, 95zsubcld 9472 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) − (𝐺↑2)) ∈ ℤ)
9759nn0zd 9465 . . . . . . . . . . 11 (𝜑 → (𝐻↑2) ∈ ℤ)
9875, 97zsubcld 9472 . . . . . . . . . 10 (𝜑 → ((𝐷↑2) − (𝐻↑2)) ∈ ℤ)
9948, 29, 494sqlem8 12581 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐶↑2) − (𝐺↑2)))
10054, 29, 554sqlem8 12581 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐷↑2) − (𝐻↑2)))
10130, 96, 98, 99, 100dvds2addd 12013 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐶↑2) − (𝐺↑2)) + ((𝐷↑2) − (𝐻↑2))))
10248zcnd 9468 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
103102sqcld 10782 . . . . . . . . . 10 (𝜑 → (𝐶↑2) ∈ ℂ)
10454zcnd 9468 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
105104sqcld 10782 . . . . . . . . . 10 (𝜑 → (𝐷↑2) ∈ ℂ)
10651zcnd 9468 . . . . . . . . . . 11 (𝜑𝐺 ∈ ℂ)
107106sqcld 10782 . . . . . . . . . 10 (𝜑 → (𝐺↑2) ∈ ℂ)
10857zcnd 9468 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℂ)
109108sqcld 10782 . . . . . . . . . 10 (𝜑 → (𝐻↑2) ∈ ℂ)
110103, 105, 107, 109addsub4d 8403 . . . . . . . . 9 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))) = (((𝐶↑2) − (𝐺↑2)) + ((𝐷↑2) − (𝐻↑2))))
111101, 110breqtrrd 4062 . . . . . . . 8 (𝜑𝑀 ∥ (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))))
11230, 71, 77, 94, 111dvds2addd 12013 . . . . . . 7 (𝜑𝑀 ∥ ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
113 4sq.p . . . . . . . . 9 (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
114113oveq1d 5940 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))))
11586, 88addcld 8065 . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℂ)
116103, 105addcld 8065 . . . . . . . . 9 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℂ)
11790, 92addcld 8065 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
118107, 109addcld 8065 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℂ)
119115, 116, 117, 118addsub4d 8403 . . . . . . . 8 (𝜑 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
120114, 119eqtrd 2229 . . . . . . 7 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
121112, 120breqtrrd 4062 . . . . . 6 (𝜑𝑀 ∥ ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))))
12230, 33, 63, 65, 121dvds2subd 12011 . . . . 5 (𝜑𝑀 ∥ ((𝑀 · 𝑃) − ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))))
12329nncnd 9023 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
12420nncnd 9023 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
125123, 124mulcld 8066 . . . . . 6 (𝜑 → (𝑀 · 𝑃) ∈ ℂ)
126117, 118addcld 8065 . . . . . 6 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℂ)
127125, 126nncand 8361 . . . . 5 (𝜑 → ((𝑀 · 𝑃) − ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
128122, 127breqtrd 4060 . . . 4 (𝜑𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
12929nnne0d 9054 . . . . 5 (𝜑𝑀 ≠ 0)
13046, 60nn0addcld 9325 . . . . . 6 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℕ0)
131130nn0zd 9465 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
132 dvdsval2 11974 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ) → (𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ↔ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ))
13330, 129, 131, 132syl3anc 1249 . . . 4 (𝜑 → (𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ↔ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ))
134128, 133mpbid 147 . . 3 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ)
135130nn0red 9322 . . . 4 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
136130nn0ge0d 9324 . . . 4 (𝜑 → 0 ≤ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
13729nnred 9022 . . . 4 (𝜑𝑀 ∈ ℝ)
13829nngt0d 9053 . . . 4 (𝜑 → 0 < 𝑀)
139 divge0 8919 . . . 4 ((((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ ∧ 0 ≤ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀))
140135, 136, 137, 138, 139syl22anc 1250 . . 3 (𝜑 → 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀))
141 elnn0z 9358 . . 3 (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℕ0 ↔ (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ ∧ 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)))
142134, 140, 141sylanbrc 417 . 2 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℕ0)
1431, 142eqeltrid 2283 1 (𝜑𝑅 ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wne 2367  wrex 2476  {crab 2479  wss 3157   class class class wbr 4034  cfv 5259  (class class class)co 5925  infcinf 7058  cr 7897  0cc0 7898  1c1 7899   + caddc 7901   · cmul 7903   < clt 8080  cle 8081  cmin 8216   / cdiv 8718  cn 9009  2c2 9060  0cn0 9268  cz 9345  cuz 9620  ...cfz 10102   mod cmo 10433  cexp 10649  cdvds 11971  cprime 12302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303  df-gz 12566
This theorem is referenced by:  4sqlem17  12603
  Copyright terms: Public domain W3C validator