![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cncfcncntop | GIF version |
Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.) |
Ref | Expression |
---|---|
cncfcn.2 | ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
cncfcn.3 | ⊢ 𝐾 = (𝐽 ↾t 𝐴) |
cncfcn.4 | ⊢ 𝐿 = (𝐽 ↾t 𝐵) |
Ref | Expression |
---|---|
cncfcncntop | ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐾 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴)) | |
2 | eqid 2193 | . . 3 ⊢ ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵)) | |
3 | eqid 2193 | . . 3 ⊢ (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) | |
4 | eqid 2193 | . . 3 ⊢ (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) | |
5 | 1, 2, 3, 4 | cncfmet 14747 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))) |
6 | cncfcn.3 | . . . 4 ⊢ 𝐾 = (𝐽 ↾t 𝐴) | |
7 | cnxmet 14699 | . . . . 5 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
8 | simpl 109 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐴 ⊆ ℂ) | |
9 | cncfcn.2 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) | |
10 | 1, 9, 3 | metrest 14674 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽 ↾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
11 | 7, 8, 10 | sylancr 414 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
12 | 6, 11 | eqtrid 2238 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
13 | cncfcn.4 | . . . 4 ⊢ 𝐿 = (𝐽 ↾t 𝐵) | |
14 | simpr 110 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ) | |
15 | 2, 9, 4 | metrest 14674 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
16 | 7, 14, 15 | sylancr 414 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
17 | 13, 16 | eqtrid 2238 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
18 | 12, 17 | oveq12d 5936 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐾 Cn 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))) |
19 | 5, 18 | eqtr4d 2229 | 1 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐾 Cn 𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 × cxp 4657 ↾ cres 4661 ∘ ccom 4663 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 − cmin 8190 abscabs 11141 ↾t crest 12850 ∞Metcxmet 14032 MetOpencmopn 14037 Cn ccn 14353 –cn→ccncf 14725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-map 6704 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-xneg 9838 df-xadd 9839 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-rest 12852 df-topgen 12871 df-psmet 14039 df-xmet 14040 df-met 14041 df-bl 14042 df-mopn 14043 df-top 14166 df-topon 14179 df-bases 14211 df-cn 14356 df-cnp 14357 df-cncf 14726 |
This theorem is referenced by: cncfcn1cntop 14749 cncfmpt2fcntop 14753 cnrehmeocntop 14764 cnlimcim 14825 cnlimc 14826 dvcn 14849 |
Copyright terms: Public domain | W3C validator |