![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cncfcncntop | GIF version |
Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.) |
Ref | Expression |
---|---|
cncfcn.2 | ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
cncfcn.3 | ⊢ 𝐾 = (𝐽 ↾t 𝐴) |
cncfcn.4 | ⊢ 𝐿 = (𝐽 ↾t 𝐵) |
Ref | Expression |
---|---|
cncfcncntop | ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐾 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . 3 ⊢ ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴)) | |
2 | eqid 2177 | . . 3 ⊢ ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵)) | |
3 | eqid 2177 | . . 3 ⊢ (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) | |
4 | eqid 2177 | . . 3 ⊢ (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) | |
5 | 1, 2, 3, 4 | cncfmet 13712 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))) |
6 | cncfcn.3 | . . . 4 ⊢ 𝐾 = (𝐽 ↾t 𝐴) | |
7 | cnxmet 13664 | . . . . 5 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
8 | simpl 109 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐴 ⊆ ℂ) | |
9 | cncfcn.2 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) | |
10 | 1, 9, 3 | metrest 13639 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽 ↾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
11 | 7, 8, 10 | sylancr 414 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
12 | 6, 11 | eqtrid 2222 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
13 | cncfcn.4 | . . . 4 ⊢ 𝐿 = (𝐽 ↾t 𝐵) | |
14 | simpr 110 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ) | |
15 | 2, 9, 4 | metrest 13639 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
16 | 7, 14, 15 | sylancr 414 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
17 | 13, 16 | eqtrid 2222 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
18 | 12, 17 | oveq12d 5886 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐾 Cn 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))) |
19 | 5, 18 | eqtr4d 2213 | 1 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐾 Cn 𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ⊆ wss 3129 × cxp 4620 ↾ cres 4624 ∘ ccom 4626 ‘cfv 5211 (class class class)co 5868 ℂcc 7787 − cmin 8105 abscabs 10977 ↾t crest 12623 ∞Metcxmet 13113 MetOpencmopn 13118 Cn ccn 13318 –cn→ccncf 13690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4205 ax-un 4429 ax-setind 4532 ax-iinf 4583 ax-cnex 7880 ax-resscn 7881 ax-1cn 7882 ax-1re 7883 ax-icn 7884 ax-addcl 7885 ax-addrcl 7886 ax-mulcl 7887 ax-mulrcl 7888 ax-addcom 7889 ax-mulcom 7890 ax-addass 7891 ax-mulass 7892 ax-distr 7893 ax-i2m1 7894 ax-0lt1 7895 ax-1rid 7896 ax-0id 7897 ax-rnegex 7898 ax-precex 7899 ax-cnre 7900 ax-pre-ltirr 7901 ax-pre-ltwlin 7902 ax-pre-lttrn 7903 ax-pre-apti 7904 ax-pre-ltadd 7905 ax-pre-mulgt0 7906 ax-pre-mulext 7907 ax-arch 7908 ax-caucvg 7909 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4289 df-po 4292 df-iso 4293 df-iord 4362 df-on 4364 df-ilim 4365 df-suc 4367 df-iom 4586 df-xp 4628 df-rel 4629 df-cnv 4630 df-co 4631 df-dm 4632 df-rn 4633 df-res 4634 df-ima 4635 df-iota 5173 df-fun 5213 df-fn 5214 df-f 5215 df-f1 5216 df-fo 5217 df-f1o 5218 df-fv 5219 df-isom 5220 df-riota 5824 df-ov 5871 df-oprab 5872 df-mpo 5873 df-1st 6134 df-2nd 6135 df-recs 6299 df-frec 6385 df-map 6643 df-sup 6976 df-inf 6977 df-pnf 7971 df-mnf 7972 df-xr 7973 df-ltxr 7974 df-le 7975 df-sub 8107 df-neg 8108 df-reap 8509 df-ap 8516 df-div 8606 df-inn 8896 df-2 8954 df-3 8955 df-4 8956 df-n0 9153 df-z 9230 df-uz 9505 df-q 9596 df-rp 9628 df-xneg 9746 df-xadd 9747 df-seqfrec 10419 df-exp 10493 df-cj 10822 df-re 10823 df-im 10824 df-rsqrt 10978 df-abs 10979 df-rest 12625 df-topgen 12644 df-psmet 13120 df-xmet 13121 df-met 13122 df-bl 13123 df-mopn 13124 df-top 13129 df-topon 13142 df-bases 13174 df-cn 13321 df-cnp 13322 df-cncf 13691 |
This theorem is referenced by: cncfcn1cntop 13714 cncfmpt2fcntop 13718 cnrehmeocntop 13726 cnlimcim 13773 cnlimc 13774 dvcn 13797 |
Copyright terms: Public domain | W3C validator |