![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cncfcncntop | GIF version |
Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.) |
Ref | Expression |
---|---|
cncfcn.2 | β’ π½ = (MetOpenβ(abs β β )) |
cncfcn.3 | β’ πΎ = (π½ βΎt π΄) |
cncfcn.4 | β’ πΏ = (π½ βΎt π΅) |
Ref | Expression |
---|---|
cncfcncntop | β’ ((π΄ β β β§ π΅ β β) β (π΄βcnβπ΅) = (πΎ Cn πΏ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2187 | . . 3 β’ ((abs β β ) βΎ (π΄ Γ π΄)) = ((abs β β ) βΎ (π΄ Γ π΄)) | |
2 | eqid 2187 | . . 3 β’ ((abs β β ) βΎ (π΅ Γ π΅)) = ((abs β β ) βΎ (π΅ Γ π΅)) | |
3 | eqid 2187 | . . 3 β’ (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) | |
4 | eqid 2187 | . . 3 β’ (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅))) = (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅))) | |
5 | 1, 2, 3, 4 | cncfmet 14319 | . 2 β’ ((π΄ β β β§ π΅ β β) β (π΄βcnβπ΅) = ((MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) Cn (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅))))) |
6 | cncfcn.3 | . . . 4 β’ πΎ = (π½ βΎt π΄) | |
7 | cnxmet 14271 | . . . . 5 β’ (abs β β ) β (βMetββ) | |
8 | simpl 109 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β π΄ β β) | |
9 | cncfcn.2 | . . . . . 6 β’ π½ = (MetOpenβ(abs β β )) | |
10 | 1, 9, 3 | metrest 14246 | . . . . 5 β’ (((abs β β ) β (βMetββ) β§ π΄ β β) β (π½ βΎt π΄) = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄)))) |
11 | 7, 8, 10 | sylancr 414 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π½ βΎt π΄) = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄)))) |
12 | 6, 11 | eqtrid 2232 | . . 3 β’ ((π΄ β β β§ π΅ β β) β πΎ = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄)))) |
13 | cncfcn.4 | . . . 4 β’ πΏ = (π½ βΎt π΅) | |
14 | simpr 110 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β π΅ β β) | |
15 | 2, 9, 4 | metrest 14246 | . . . . 5 β’ (((abs β β ) β (βMetββ) β§ π΅ β β) β (π½ βΎt π΅) = (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅)))) |
16 | 7, 14, 15 | sylancr 414 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π½ βΎt π΅) = (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅)))) |
17 | 13, 16 | eqtrid 2232 | . . 3 β’ ((π΄ β β β§ π΅ β β) β πΏ = (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅)))) |
18 | 12, 17 | oveq12d 5906 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πΎ Cn πΏ) = ((MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) Cn (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅))))) |
19 | 5, 18 | eqtr4d 2223 | 1 β’ ((π΄ β β β§ π΅ β β) β (π΄βcnβπ΅) = (πΎ Cn πΏ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1363 β wcel 2158 β wss 3141 Γ cxp 4636 βΎ cres 4640 β ccom 4642 βcfv 5228 (class class class)co 5888 βcc 7822 β cmin 8141 abscabs 11019 βΎt crest 12705 βMetcxmet 13666 MetOpencmopn 13671 Cn ccn 13925 βcnβccncf 14297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-mulrcl 7923 ax-addcom 7924 ax-mulcom 7925 ax-addass 7926 ax-mulass 7927 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-1rid 7931 ax-0id 7932 ax-rnegex 7933 ax-precex 7934 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-apti 7939 ax-pre-ltadd 7940 ax-pre-mulgt0 7941 ax-pre-mulext 7942 ax-arch 7943 ax-caucvg 7944 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-recs 6319 df-frec 6405 df-map 6663 df-sup 6996 df-inf 6997 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-reap 8545 df-ap 8552 df-div 8643 df-inn 8933 df-2 8991 df-3 8992 df-4 8993 df-n0 9190 df-z 9267 df-uz 9542 df-q 9633 df-rp 9667 df-xneg 9785 df-xadd 9786 df-seqfrec 10459 df-exp 10533 df-cj 10864 df-re 10865 df-im 10866 df-rsqrt 11020 df-abs 11021 df-rest 12707 df-topgen 12726 df-psmet 13673 df-xmet 13674 df-met 13675 df-bl 13676 df-mopn 13677 df-top 13738 df-topon 13751 df-bases 13783 df-cn 13928 df-cnp 13929 df-cncf 14298 |
This theorem is referenced by: cncfcn1cntop 14321 cncfmpt2fcntop 14325 cnrehmeocntop 14333 cnlimcim 14380 cnlimc 14381 dvcn 14404 |
Copyright terms: Public domain | W3C validator |