ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cntoptopon GIF version

Theorem cntoptopon 14035
Description: The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
Hypothesis
Ref Expression
cntoptopn.1 𝐽 = (MetOpenβ€˜(abs ∘ βˆ’ ))
Assertion
Ref Expression
cntoptopon 𝐽 ∈ (TopOnβ€˜β„‚)

Proof of Theorem cntoptopon
StepHypRef Expression
1 cnxmet 14034 . 2 (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚)
2 cntoptopn.1 . . 3 𝐽 = (MetOpenβ€˜(abs ∘ βˆ’ ))
32mopntopon 13946 . 2 ((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) β†’ 𝐽 ∈ (TopOnβ€˜β„‚))
41, 3ax-mp 5 1 𝐽 ∈ (TopOnβ€˜β„‚)
Colors of variables: wff set class
Syntax hints:   = wceq 1353   ∈ wcel 2148   ∘ ccom 4631  β€˜cfv 5217  β„‚cc 7809   βˆ’ cmin 8128  abscabs 11006  βˆžMetcxmet 13443  MetOpencmopn 13448  TopOnctopon 13513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-map 6650  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-xneg 9772  df-xadd 9773  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-topgen 12709  df-psmet 13450  df-xmet 13451  df-met 13452  df-bl 13453  df-mopn 13454  df-top 13501  df-topon 13514  df-bases 13546
This theorem is referenced by:  cntoptop  14036  unicntopcntop  14039  divcnap  14058  fsumcncntop  14059  cncfcn1cntop  14084  cncfmpt2fcntop  14088  cnrehmeocntop  14096  cnplimcim  14139  cnlimcim  14143  cnlimc  14144  limccnpcntop  14147  limccnp2lem  14148  limccnp2cntop  14149  reldvg  14151  dvfvalap  14153  dvbss  14157  dvfgg  14160  dvidlemap  14163  dvcnp2cntop  14166  dvcn  14167  dvaddxxbr  14168  dvmulxxbr  14169  dvcoapbr  14174  dvcjbr  14175  dvrecap  14180  dveflem  14190
  Copyright terms: Public domain W3C validator