![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cntoptopon | GIF version |
Description: The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.) |
Ref | Expression |
---|---|
cntoptopn.1 | ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
Ref | Expression |
---|---|
cntoptopon | ⊢ 𝐽 ∈ (TopOn‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnxmet 14508 | . 2 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
2 | cntoptopn.1 | . . 3 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) | |
3 | 2 | mopntopon 14420 | . 2 ⊢ ((abs ∘ − ) ∈ (∞Met‘ℂ) → 𝐽 ∈ (TopOn‘ℂ)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 ∘ ccom 4648 ‘cfv 5235 ℂcc 7840 − cmin 8159 abscabs 11041 ∞Metcxmet 13866 MetOpencmopn 13871 TopOnctopon 13987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 ax-caucvg 7962 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-frec 6417 df-map 6677 df-sup 7014 df-inf 7015 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-n0 9208 df-z 9285 df-uz 9560 df-q 9652 df-rp 9686 df-xneg 9804 df-xadd 9805 df-seqfrec 10479 df-exp 10554 df-cj 10886 df-re 10887 df-im 10888 df-rsqrt 11042 df-abs 11043 df-topgen 12768 df-psmet 13873 df-xmet 13874 df-met 13875 df-bl 13876 df-mopn 13877 df-top 13975 df-topon 13988 df-bases 14020 |
This theorem is referenced by: cntoptop 14510 unicntopcntop 14513 divcnap 14532 fsumcncntop 14533 cncfcn1cntop 14558 cncfmpt2fcntop 14562 cnrehmeocntop 14570 cnplimcim 14613 cnlimcim 14617 cnlimc 14618 limccnpcntop 14621 limccnp2lem 14622 limccnp2cntop 14623 reldvg 14625 dvfvalap 14627 dvbss 14631 dvfgg 14634 dvidlemap 14637 dvcnp2cntop 14640 dvcn 14641 dvaddxxbr 14642 dvmulxxbr 14643 dvcoapbr 14648 dvcjbr 14649 dvrecap 14654 dveflem 14664 |
Copyright terms: Public domain | W3C validator |