| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cntoptopon | GIF version | ||
| Description: The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.) |
| Ref | Expression |
|---|---|
| cntoptopn.1 | ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
| Ref | Expression |
|---|---|
| cntoptopon | ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnxmet 14875 | . 2 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 2 | cntoptopn.1 | . . 3 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) | |
| 3 | 2 | mopntopon 14787 | . 2 ⊢ ((abs ∘ − ) ∈ (∞Met‘ℂ) → 𝐽 ∈ (TopOn‘ℂ)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∘ ccom 4668 ‘cfv 5259 ℂcc 7896 − cmin 8216 abscabs 11181 ∞Metcxmet 14170 MetOpencmopn 14175 TopOnctopon 14354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-map 6718 df-sup 7059 df-inf 7060 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-n0 9269 df-z 9346 df-uz 9621 df-q 9713 df-rp 9748 df-xneg 9866 df-xadd 9867 df-seqfrec 10559 df-exp 10650 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 df-topgen 12964 df-psmet 14177 df-xmet 14178 df-met 14179 df-bl 14180 df-mopn 14181 df-top 14342 df-topon 14355 df-bases 14387 |
| This theorem is referenced by: cntoptop 14877 unicntopcntop 14886 divcnap 14909 fsumcncntop 14911 cncfcn1cntop 14938 cncfmpt2fcntop 14943 cnrehmeocntop 14954 cnplimcim 15011 cnlimcim 15015 cnlimc 15016 limccnpcntop 15019 limccnp2lem 15020 limccnp2cntop 15021 reldvg 15023 dvfvalap 15025 dvbss 15029 dvfgg 15032 dvidlemap 15035 dvcnp2cntop 15043 dvcn 15044 dvaddxxbr 15045 dvmulxxbr 15046 dvcoapbr 15051 dvcjbr 15052 dvrecap 15057 dveflem 15070 |
| Copyright terms: Public domain | W3C validator |