![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fissn0dvds | Structured version Visualization version GIF version |
Description: For each finite subset of the integers not containing 0 there is a positive integer which is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020.) |
Ref | Expression |
---|---|
fissn0dvds | ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1116 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → 𝑍 ⊆ ℤ) | |
2 | simp2 1117 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → 𝑍 ∈ Fin) | |
3 | eqid 2772 | . . 3 ⊢ (abs‘∏𝑘 ∈ 𝑍 𝑘) = (abs‘∏𝑘 ∈ 𝑍 𝑘) | |
4 | simp3 1118 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → 0 ∉ 𝑍) | |
5 | 1, 2, 3, 4 | absprodnn 15808 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (abs‘∏𝑘 ∈ 𝑍 𝑘) ∈ ℕ) |
6 | breq2 4927 | . . . 4 ⊢ (𝑛 = (abs‘∏𝑘 ∈ 𝑍 𝑘) → (𝑚 ∥ 𝑛 ↔ 𝑚 ∥ (abs‘∏𝑘 ∈ 𝑍 𝑘))) | |
7 | 6 | ralbidv 3141 | . . 3 ⊢ (𝑛 = (abs‘∏𝑘 ∈ 𝑍 𝑘) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ (abs‘∏𝑘 ∈ 𝑍 𝑘))) |
8 | 7 | adantl 474 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ 𝑛 = (abs‘∏𝑘 ∈ 𝑍 𝑘)) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ (abs‘∏𝑘 ∈ 𝑍 𝑘))) |
9 | 1, 2, 3 | absproddvds 15807 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∀𝑚 ∈ 𝑍 𝑚 ∥ (abs‘∏𝑘 ∈ 𝑍 𝑘)) |
10 | 5, 8, 9 | rspcedvd 3536 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ∉ wnel 3067 ∀wral 3082 ∃wrex 3083 ⊆ wss 3825 class class class wbr 4923 ‘cfv 6182 Fincfn 8298 0cc0 10327 ℕcn 11431 ℤcz 11786 abscabs 14444 ∏cprod 15109 ∥ cdvds 15457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8890 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-se 5360 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-sup 8693 df-oi 8761 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-n0 11701 df-z 11787 df-uz 12052 df-rp 12198 df-fz 12702 df-fzo 12843 df-seq 13178 df-exp 13238 df-hash 13499 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-clim 14696 df-prod 15110 df-dvds 15458 |
This theorem is referenced by: fissn0dvdsn0 15810 |
Copyright terms: Public domain | W3C validator |