| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fissn0dvds | Structured version Visualization version GIF version | ||
| Description: For each finite subset of the integers not containing 0 there is a positive integer which is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020.) |
| Ref | Expression |
|---|---|
| fissn0dvds | ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → 𝑍 ⊆ ℤ) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → 𝑍 ∈ Fin) | |
| 3 | eqid 2729 | . . 3 ⊢ (abs‘∏𝑘 ∈ 𝑍 𝑘) = (abs‘∏𝑘 ∈ 𝑍 𝑘) | |
| 4 | simp3 1138 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → 0 ∉ 𝑍) | |
| 5 | 1, 2, 3, 4 | absprodnn 16547 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (abs‘∏𝑘 ∈ 𝑍 𝑘) ∈ ℕ) |
| 6 | breq2 5099 | . . . 4 ⊢ (𝑛 = (abs‘∏𝑘 ∈ 𝑍 𝑘) → (𝑚 ∥ 𝑛 ↔ 𝑚 ∥ (abs‘∏𝑘 ∈ 𝑍 𝑘))) | |
| 7 | 6 | ralbidv 3152 | . . 3 ⊢ (𝑛 = (abs‘∏𝑘 ∈ 𝑍 𝑘) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ (abs‘∏𝑘 ∈ 𝑍 𝑘))) |
| 8 | 7 | adantl 481 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ 𝑛 = (abs‘∏𝑘 ∈ 𝑍 𝑘)) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ (abs‘∏𝑘 ∈ 𝑍 𝑘))) |
| 9 | 1, 2, 3 | absproddvds 16546 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∀𝑚 ∈ 𝑍 𝑚 ∥ (abs‘∏𝑘 ∈ 𝑍 𝑘)) |
| 10 | 5, 8, 9 | rspcedvd 3581 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 class class class wbr 5095 ‘cfv 6486 Fincfn 8879 0cc0 11028 ℕcn 12146 ℤcz 12489 abscabs 15159 ∏cprod 15828 ∥ cdvds 16181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-prod 15829 df-dvds 16182 |
| This theorem is referenced by: fissn0dvdsn0 16549 |
| Copyright terms: Public domain | W3C validator |