MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fissn0dvds Structured version   Visualization version   GIF version

Theorem fissn0dvds 16053
Description: For each finite subset of the integers not containing 0 there is a positive integer which is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020.)
Assertion
Ref Expression
fissn0dvds ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∃𝑛 ∈ ℕ ∀𝑚𝑍 𝑚𝑛)
Distinct variable group:   𝑚,𝑍,𝑛

Proof of Theorem fissn0dvds
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . 3 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → 𝑍 ⊆ ℤ)
2 simp2 1138 . . 3 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → 𝑍 ∈ Fin)
3 eqid 2738 . . 3 (abs‘∏𝑘𝑍 𝑘) = (abs‘∏𝑘𝑍 𝑘)
4 simp3 1139 . . 3 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → 0 ∉ 𝑍)
51, 2, 3, 4absprodnn 16052 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (abs‘∏𝑘𝑍 𝑘) ∈ ℕ)
6 breq2 5031 . . . 4 (𝑛 = (abs‘∏𝑘𝑍 𝑘) → (𝑚𝑛𝑚 ∥ (abs‘∏𝑘𝑍 𝑘)))
76ralbidv 3109 . . 3 (𝑛 = (abs‘∏𝑘𝑍 𝑘) → (∀𝑚𝑍 𝑚𝑛 ↔ ∀𝑚𝑍 𝑚 ∥ (abs‘∏𝑘𝑍 𝑘)))
87adantl 485 . 2 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ 𝑛 = (abs‘∏𝑘𝑍 𝑘)) → (∀𝑚𝑍 𝑚𝑛 ↔ ∀𝑚𝑍 𝑚 ∥ (abs‘∏𝑘𝑍 𝑘)))
91, 2, 3absproddvds 16051 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∀𝑚𝑍 𝑚 ∥ (abs‘∏𝑘𝑍 𝑘))
105, 8, 9rspcedvd 3527 1 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∃𝑛 ∈ ℕ ∀𝑚𝑍 𝑚𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1088   = wceq 1542  wcel 2113  wnel 3038  wral 3053  wrex 3054  wss 3841   class class class wbr 5027  cfv 6333  Fincfn 8548  0cc0 10608  cn 11709  cz 12055  abscabs 14676  cprod 15344  cdvds 15692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-sup 8972  df-oi 9040  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-z 12056  df-uz 12318  df-rp 12466  df-fz 12975  df-fzo 13118  df-seq 13454  df-exp 13515  df-hash 13776  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-clim 14928  df-prod 15345  df-dvds 15693
This theorem is referenced by:  fissn0dvdsn0  16054
  Copyright terms: Public domain W3C validator