Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mplasclf | Structured version Visualization version GIF version |
Description: The scalar injection is a function into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
Ref | Expression |
---|---|
mplasclf.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplasclf.b | ⊢ 𝐵 = (Base‘𝑃) |
mplasclf.k | ⊢ 𝐾 = (Base‘𝑅) |
mplasclf.a | ⊢ 𝐴 = (algSc‘𝑃) |
mplasclf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mplasclf.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
mplasclf | ⊢ (𝜑 → 𝐴:𝐾⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplasclf.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
2 | mplasclf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
3 | mplasclf.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑃) | |
4 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
5 | mplasclf.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
6 | 5 | mplring 21004 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) |
7 | 5 | mpllmod 21003 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ LMod) |
8 | eqid 2738 | . . . 4 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
9 | mplasclf.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
10 | 3, 4, 6, 7, 8, 9 | asclf 20865 | . . 3 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝐴:(Base‘(Scalar‘𝑃))⟶𝐵) |
11 | 1, 2, 10 | syl2anc 587 | . 2 ⊢ (𝜑 → 𝐴:(Base‘(Scalar‘𝑃))⟶𝐵) |
12 | mplasclf.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
13 | 5, 1, 2 | mplsca 20997 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
14 | 13 | fveq2d 6739 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
15 | 12, 14 | eqtrid 2790 | . . 3 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑃))) |
16 | 15 | feq2d 6549 | . 2 ⊢ (𝜑 → (𝐴:𝐾⟶𝐵 ↔ 𝐴:(Base‘(Scalar‘𝑃))⟶𝐵)) |
17 | 11, 16 | mpbird 260 | 1 ⊢ (𝜑 → 𝐴:𝐾⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ⟶wf 6393 ‘cfv 6397 (class class class)co 7231 Basecbs 16784 Scalarcsca 16829 Ringcrg 19586 algSccascl 20838 mPoly cmpl 20889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-iin 4921 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-se 5524 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-isom 6406 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-of 7487 df-ofr 7488 df-om 7663 df-1st 7779 df-2nd 7780 df-supp 7924 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-er 8411 df-map 8530 df-pm 8531 df-ixp 8599 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-fsupp 9010 df-oi 9150 df-card 9579 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-7 11922 df-8 11923 df-9 11924 df-n0 12115 df-z 12201 df-uz 12463 df-fz 13120 df-fzo 13263 df-seq 13599 df-hash 13921 df-struct 16724 df-sets 16741 df-slot 16759 df-ndx 16769 df-base 16785 df-ress 16809 df-plusg 16839 df-mulr 16840 df-sca 16842 df-vsca 16843 df-tset 16845 df-0g 16970 df-gsum 16971 df-mre 17113 df-mrc 17114 df-acs 17116 df-mgm 18138 df-sgrp 18187 df-mnd 18198 df-mhm 18242 df-submnd 18243 df-grp 18392 df-minusg 18393 df-sbg 18394 df-mulg 18513 df-subg 18564 df-ghm 18644 df-cntz 18735 df-cmn 19196 df-abl 19197 df-mgp 19529 df-ur 19541 df-ring 19588 df-subrg 19822 df-lmod 19925 df-lss 19993 df-ascl 20841 df-psr 20892 df-mpl 20894 |
This theorem is referenced by: evlseu 21067 evlssca 21073 mhpsclcl 21111 selvval2lem4 39969 selvval2lem5 39970 evlsscaval 40011 mhphf 40023 |
Copyright terms: Public domain | W3C validator |