Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > btwnleg | Structured version Visualization version GIF version |
Description: Betweenness implies less-than relation. (Contributed by Thierry Arnoux, 3-Jul-2019.) |
Ref | Expression |
---|---|
legval.p | ⊢ 𝑃 = (Base‘𝐺) |
legval.d | ⊢ − = (dist‘𝐺) |
legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
legval.l | ⊢ ≤ = (≤G‘𝐺) |
legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
legid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
legid.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
legtrd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
btwnleg.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
btwnleg | ⊢ (𝜑 → (𝐴 − 𝐵) ≤ (𝐴 − 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | legid.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
2 | btwnleg.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
3 | eqidd 2759 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐴 − 𝐵)) | |
4 | eleq1 2839 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ (𝐴𝐼𝐶) ↔ 𝐵 ∈ (𝐴𝐼𝐶))) | |
5 | oveq2 7164 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴 − 𝑥) = (𝐴 − 𝐵)) | |
6 | 5 | eqeq2d 2769 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐴 − 𝐵) = (𝐴 − 𝑥) ↔ (𝐴 − 𝐵) = (𝐴 − 𝐵))) |
7 | 4, 6 | anbi12d 633 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝐴 − 𝐵) = (𝐴 − 𝑥)) ↔ (𝐵 ∈ (𝐴𝐼𝐶) ∧ (𝐴 − 𝐵) = (𝐴 − 𝐵)))) |
8 | 7 | rspcev 3543 | . . 3 ⊢ ((𝐵 ∈ 𝑃 ∧ (𝐵 ∈ (𝐴𝐼𝐶) ∧ (𝐴 − 𝐵) = (𝐴 − 𝐵))) → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝐴 − 𝐵) = (𝐴 − 𝑥))) |
9 | 1, 2, 3, 8 | syl12anc 835 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝐴 − 𝐵) = (𝐴 − 𝑥))) |
10 | legval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
11 | legval.d | . . 3 ⊢ − = (dist‘𝐺) | |
12 | legval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
13 | legval.l | . . 3 ⊢ ≤ = (≤G‘𝐺) | |
14 | legval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
15 | legid.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
16 | legtrd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
17 | 10, 11, 12, 13, 14, 15, 1, 15, 16 | legov 26491 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ (𝐴 − 𝐶) ↔ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝐴 − 𝐵) = (𝐴 − 𝑥)))) |
18 | 9, 17 | mpbird 260 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ≤ (𝐴 − 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 class class class wbr 5036 ‘cfv 6340 (class class class)co 7156 Basecbs 16554 distcds 16645 TarskiGcstrkg 26336 Itvcitv 26342 ≤Gcleg 26488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-oadd 8122 df-er 8305 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-dju 9376 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-xnn0 12020 df-z 12034 df-uz 12296 df-fz 12953 df-fzo 13096 df-hash 13754 df-word 13927 df-concat 13983 df-s1 14010 df-s2 14270 df-s3 14271 df-trkgc 26354 df-trkgb 26355 df-trkgcb 26356 df-trkg 26359 df-cgrg 26417 df-leg 26489 |
This theorem is referenced by: legbtwn 26500 tgcgrsub2 26501 |
Copyright terms: Public domain | W3C validator |