Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cgrancol | Structured version Visualization version GIF version |
Description: Angle congruence preserves non-colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
Ref | Expression |
---|---|
cgracol.p | ⊢ 𝑃 = (Base‘𝐺) |
cgracol.i | ⊢ 𝐼 = (Itv‘𝐺) |
cgracol.m | ⊢ − = (dist‘𝐺) |
cgracol.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
cgracol.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
cgracol.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
cgracol.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
cgracol.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
cgracol.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
cgracol.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
cgracol.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
cgrancol.l | ⊢ 𝐿 = (LineG‘𝐺) |
cgrancol.2 | ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
cgrancol | ⊢ (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgrancol.2 | . 2 ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) | |
2 | cgracol.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | cgracol.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | cgracol.m | . . 3 ⊢ − = (dist‘𝐺) | |
5 | cgracol.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) → 𝐺 ∈ TarskiG) |
7 | cgracol.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) → 𝐷 ∈ 𝑃) |
9 | cgracol.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
10 | 9 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) → 𝐸 ∈ 𝑃) |
11 | cgracol.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
12 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) → 𝐹 ∈ 𝑃) |
13 | cgracol.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
14 | 13 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) → 𝐴 ∈ 𝑃) |
15 | cgracol.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
16 | 15 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) → 𝐵 ∈ 𝑃) |
17 | cgracol.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
18 | 17 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) → 𝐶 ∈ 𝑃) |
19 | eqid 2738 | . . . 4 ⊢ (hlG‘𝐺) = (hlG‘𝐺) | |
20 | cgracol.1 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | |
21 | 20 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
22 | 2, 3, 6, 19, 14, 16, 18, 8, 10, 12, 21 | cgracom 27193 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉) |
23 | cgrancol.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
24 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) | |
25 | 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 22, 23, 24 | cgracol 27199 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
26 | 1, 25 | mtand 813 | 1 ⊢ (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 class class class wbr 5073 ‘cfv 6426 (class class class)co 7267 〈“cs3 14565 Basecbs 16922 distcds 16981 TarskiGcstrkg 26798 Itvcitv 26804 LineGclng 26805 hlGchlg 26971 cgrAccgra 27178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-oadd 8288 df-er 8485 df-map 8604 df-pm 8605 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-dju 9669 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-n0 12244 df-xnn0 12316 df-z 12330 df-uz 12593 df-fz 13250 df-fzo 13393 df-hash 14055 df-word 14228 df-concat 14284 df-s1 14311 df-s2 14571 df-s3 14572 df-trkgc 26819 df-trkgb 26820 df-trkgcb 26821 df-trkg 26824 df-cgrg 26882 df-leg 26954 df-hlg 26972 df-cgra 27179 |
This theorem is referenced by: acopyeu 27205 tgasa1 27229 |
Copyright terms: Public domain | W3C validator |