![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climle | Structured version Visualization version GIF version |
Description: Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.) |
Ref | Expression |
---|---|
climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climle.5 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climle.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climle.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
climle.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climle | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climadd.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climadd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climle.5 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
4 | 1 | fvexi 6915 | . . . . . 6 ⊢ 𝑍 ∈ V |
5 | 4 | mptex 7240 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) ∈ V |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) ∈ V) |
7 | climadd.4 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
8 | climle.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) | |
9 | 8 | recnd 11292 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
10 | climle.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
11 | 10 | recnd 11292 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
12 | fveq2 6901 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐺‘𝑗) = (𝐺‘𝑘)) | |
13 | fveq2 6901 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
14 | 12, 13 | oveq12d 7442 | . . . . . 6 ⊢ (𝑗 = 𝑘 → ((𝐺‘𝑗) − (𝐹‘𝑗)) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
15 | eqid 2726 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) = (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) | |
16 | ovex 7457 | . . . . . 6 ⊢ ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ V | |
17 | 14, 15, 16 | fvmpt 7009 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
18 | 17 | adantl 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
19 | 1, 2, 3, 6, 7, 9, 11, 18 | climsub 15636 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) ⇝ (𝐵 − 𝐴)) |
20 | 8, 10 | resubcld 11692 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ ℝ) |
21 | 18, 20 | eqeltrd 2826 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘) ∈ ℝ) |
22 | climle.8 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) | |
23 | 8, 10 | subge0d 11854 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘)) ↔ (𝐹‘𝑘) ≤ (𝐺‘𝑘))) |
24 | 22, 23 | mpbird 256 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘))) |
25 | 24, 18 | breqtrrd 5181 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘)) |
26 | 1, 2, 19, 21, 25 | climge0 15586 | . 2 ⊢ (𝜑 → 0 ≤ (𝐵 − 𝐴)) |
27 | 1, 2, 3, 8 | climrecl 15585 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
28 | 1, 2, 7, 10 | climrecl 15585 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
29 | 27, 28 | subge0d 11854 | . 2 ⊢ (𝜑 → (0 ≤ (𝐵 − 𝐴) ↔ 𝐴 ≤ 𝐵)) |
30 | 26, 29 | mpbid 231 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 class class class wbr 5153 ↦ cmpt 5236 ‘cfv 6554 (class class class)co 7424 ℝcr 11157 0cc0 11158 ≤ cle 11299 − cmin 11494 ℤcz 12610 ℤ≥cuz 12874 ⇝ cli 15486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-pm 8858 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-fl 13812 df-seq 14022 df-exp 14082 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 df-rlim 15491 |
This theorem is referenced by: climlec2 15663 iserle 15664 iseraltlem1 15686 iserabs 15819 cvgcmpub 15821 itg2monolem1 25771 ulmdvlem1 26429 dchrisumlema 27517 dchrisumlem3 27520 stirlinglem10 45704 |
Copyright terms: Public domain | W3C validator |