![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climle | Structured version Visualization version GIF version |
Description: Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.) |
Ref | Expression |
---|---|
climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climle.5 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climle.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climle.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
climle.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climle | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climadd.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climadd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climle.5 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
4 | 1 | fvexi 6898 | . . . . . 6 ⊢ 𝑍 ∈ V |
5 | 4 | mptex 7219 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) ∈ V |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) ∈ V) |
7 | climadd.4 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
8 | climle.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) | |
9 | 8 | recnd 11243 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
10 | climle.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
11 | 10 | recnd 11243 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
12 | fveq2 6884 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐺‘𝑗) = (𝐺‘𝑘)) | |
13 | fveq2 6884 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
14 | 12, 13 | oveq12d 7422 | . . . . . 6 ⊢ (𝑗 = 𝑘 → ((𝐺‘𝑗) − (𝐹‘𝑗)) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
15 | eqid 2726 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) = (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) | |
16 | ovex 7437 | . . . . . 6 ⊢ ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ V | |
17 | 14, 15, 16 | fvmpt 6991 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
18 | 17 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
19 | 1, 2, 3, 6, 7, 9, 11, 18 | climsub 15582 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) ⇝ (𝐵 − 𝐴)) |
20 | 8, 10 | resubcld 11643 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ ℝ) |
21 | 18, 20 | eqeltrd 2827 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘) ∈ ℝ) |
22 | climle.8 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) | |
23 | 8, 10 | subge0d 11805 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘)) ↔ (𝐹‘𝑘) ≤ (𝐺‘𝑘))) |
24 | 22, 23 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘))) |
25 | 24, 18 | breqtrrd 5169 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘)) |
26 | 1, 2, 19, 21, 25 | climge0 15532 | . 2 ⊢ (𝜑 → 0 ≤ (𝐵 − 𝐴)) |
27 | 1, 2, 3, 8 | climrecl 15531 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
28 | 1, 2, 7, 10 | climrecl 15531 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
29 | 27, 28 | subge0d 11805 | . 2 ⊢ (𝜑 → (0 ≤ (𝐵 − 𝐴) ↔ 𝐴 ≤ 𝐵)) |
30 | 26, 29 | mpbid 231 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 class class class wbr 5141 ↦ cmpt 5224 ‘cfv 6536 (class class class)co 7404 ℝcr 11108 0cc0 11109 ≤ cle 11250 − cmin 11445 ℤcz 12559 ℤ≥cuz 12823 ⇝ cli 15432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-fl 13760 df-seq 13970 df-exp 14031 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 |
This theorem is referenced by: climlec2 15609 iserle 15610 iseraltlem1 15632 iserabs 15765 cvgcmpub 15767 itg2monolem1 25631 ulmdvlem1 26287 dchrisumlema 27372 dchrisumlem3 27375 stirlinglem10 45352 |
Copyright terms: Public domain | W3C validator |