![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climle | Structured version Visualization version GIF version |
Description: Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.) |
Ref | Expression |
---|---|
climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climle.5 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climle.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climle.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
climle.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climle | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climadd.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climadd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climle.5 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
4 | 1 | fvexi 6857 | . . . . . 6 ⊢ 𝑍 ∈ V |
5 | 4 | mptex 7174 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) ∈ V |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) ∈ V) |
7 | climadd.4 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
8 | climle.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) | |
9 | 8 | recnd 11188 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
10 | climle.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
11 | 10 | recnd 11188 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
12 | fveq2 6843 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐺‘𝑗) = (𝐺‘𝑘)) | |
13 | fveq2 6843 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
14 | 12, 13 | oveq12d 7376 | . . . . . 6 ⊢ (𝑗 = 𝑘 → ((𝐺‘𝑗) − (𝐹‘𝑗)) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
15 | eqid 2733 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) = (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) | |
16 | ovex 7391 | . . . . . 6 ⊢ ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ V | |
17 | 14, 15, 16 | fvmpt 6949 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
18 | 17 | adantl 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
19 | 1, 2, 3, 6, 7, 9, 11, 18 | climsub 15522 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) ⇝ (𝐵 − 𝐴)) |
20 | 8, 10 | resubcld 11588 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ ℝ) |
21 | 18, 20 | eqeltrd 2834 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘) ∈ ℝ) |
22 | climle.8 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) | |
23 | 8, 10 | subge0d 11750 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘)) ↔ (𝐹‘𝑘) ≤ (𝐺‘𝑘))) |
24 | 22, 23 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘))) |
25 | 24, 18 | breqtrrd 5134 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘)) |
26 | 1, 2, 19, 21, 25 | climge0 15472 | . 2 ⊢ (𝜑 → 0 ≤ (𝐵 − 𝐴)) |
27 | 1, 2, 3, 8 | climrecl 15471 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
28 | 1, 2, 7, 10 | climrecl 15471 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
29 | 27, 28 | subge0d 11750 | . 2 ⊢ (𝜑 → (0 ≤ (𝐵 − 𝐴) ↔ 𝐴 ≤ 𝐵)) |
30 | 26, 29 | mpbid 231 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3444 class class class wbr 5106 ↦ cmpt 5189 ‘cfv 6497 (class class class)co 7358 ℝcr 11055 0cc0 11056 ≤ cle 11195 − cmin 11390 ℤcz 12504 ℤ≥cuz 12768 ⇝ cli 15372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-pm 8771 df-en 8887 df-dom 8888 df-sdom 8889 df-sup 9383 df-inf 9384 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-fl 13703 df-seq 13913 df-exp 13974 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-clim 15376 df-rlim 15377 |
This theorem is referenced by: climlec2 15549 iserle 15550 iseraltlem1 15572 iserabs 15705 cvgcmpub 15707 itg2monolem1 25131 ulmdvlem1 25775 dchrisumlema 26852 dchrisumlem3 26855 stirlinglem10 44410 |
Copyright terms: Public domain | W3C validator |