![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climinf2 | Structured version Visualization version GIF version |
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climinf2.k | ⊢ Ⅎ𝑘𝜑 |
climinf2.n | ⊢ Ⅎ𝑘𝐹 |
climinf2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climinf2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climinf2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climinf2.l | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
climinf2.e | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climinf2 | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climinf2.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climinf2.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climinf2.f | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | climinf2.k | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
5 | nfv 1874 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
6 | 4, 5 | nfan 1863 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
7 | climinf2.n | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
8 | nfcv 2925 | . . . . . 6 ⊢ Ⅎ𝑘(𝑗 + 1) | |
9 | 7, 8 | nffv 6506 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) |
10 | nfcv 2925 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
11 | nfcv 2925 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
12 | 7, 11 | nffv 6506 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
13 | 9, 10, 12 | nfbr 4972 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗) |
14 | 6, 13 | nfim 1860 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
15 | eleq1w 2841 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
16 | 15 | anbi2d 620 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | fvoveq1 6997 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1))) | |
18 | fveq2 6496 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
19 | 17, 18 | breq12d 4938 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗))) |
20 | 16, 19 | imbi12d 337 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)))) |
21 | climinf2.l | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
22 | 14, 20, 21 | chvar 2327 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
23 | climinf2.e | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) | |
24 | nfv 1874 | . . . 4 ⊢ Ⅎ𝑦∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) | |
25 | nfv 1874 | . . . 4 ⊢ Ⅎ𝑥∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗) | |
26 | breq1 4928 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ≤ (𝐹‘𝑘) ↔ 𝑦 ≤ (𝐹‘𝑘))) | |
27 | 26 | ralbidv 3140 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘))) |
28 | nfv 1874 | . . . . . . 7 ⊢ Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑘) | |
29 | nfcv 2925 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑦 | |
30 | 29, 10, 12 | nfbr 4972 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑦 ≤ (𝐹‘𝑗) |
31 | 18 | breq2d 4937 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑦 ≤ (𝐹‘𝑘) ↔ 𝑦 ≤ (𝐹‘𝑗))) |
32 | 28, 30, 31 | cbvral 3372 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗)) |
33 | 32 | a1i 11 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗))) |
34 | 27, 33 | bitrd 271 | . . . 4 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗))) |
35 | 24, 25, 34 | cbvrex 3373 | . . 3 ⊢ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗)) |
36 | 23, 35 | sylib 210 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗)) |
37 | 1, 2, 3, 22, 36 | climinf2lem 41452 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 Ⅎwnf 1747 ∈ wcel 2051 Ⅎwnfc 2909 ∀wral 3081 ∃wrex 3082 class class class wbr 4925 ran crn 5404 ⟶wf 6181 ‘cfv 6185 (class class class)co 6974 infcinf 8698 ℝcr 10332 1c1 10334 + caddc 10336 ℝ*cxr 10471 < clt 10472 ≤ cle 10473 ℤcz 11791 ℤ≥cuz 12056 ⇝ cli 14700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-sup 8699 df-inf 8700 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-n0 11706 df-z 11792 df-uz 12057 df-rp 12203 df-fz 12707 df-seq 13183 df-exp 13243 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-clim 14704 |
This theorem is referenced by: climinf2mpt 41460 climinfmpt 41461 climinf3 41462 |
Copyright terms: Public domain | W3C validator |