![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climinf2 | Structured version Visualization version GIF version |
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climinf2.k | ⊢ Ⅎ𝑘𝜑 |
climinf2.n | ⊢ Ⅎ𝑘𝐹 |
climinf2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climinf2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climinf2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climinf2.l | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
climinf2.e | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climinf2 | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climinf2.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climinf2.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climinf2.f | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | climinf2.k | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
5 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
6 | 4, 5 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
7 | climinf2.n | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
8 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘(𝑗 + 1) | |
9 | 7, 8 | nffv 6906 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) |
10 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
11 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
12 | 7, 11 | nffv 6906 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
13 | 9, 10, 12 | nfbr 5196 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗) |
14 | 6, 13 | nfim 1891 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
15 | eleq1w 2808 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
16 | 15 | anbi2d 628 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | fvoveq1 7442 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1))) | |
18 | fveq2 6896 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
19 | 17, 18 | breq12d 5162 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗))) |
20 | 16, 19 | imbi12d 343 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)))) |
21 | climinf2.l | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
22 | 14, 20, 21 | chvarfv 2228 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
23 | climinf2.e | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) | |
24 | breq1 5152 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ≤ (𝐹‘𝑘) ↔ 𝑦 ≤ (𝐹‘𝑘))) | |
25 | 24 | ralbidv 3167 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘))) |
26 | nfv 1909 | . . . . . . 7 ⊢ Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑘) | |
27 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑦 | |
28 | 27, 10, 12 | nfbr 5196 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑦 ≤ (𝐹‘𝑗) |
29 | 18 | breq2d 5161 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑦 ≤ (𝐹‘𝑘) ↔ 𝑦 ≤ (𝐹‘𝑗))) |
30 | 26, 28, 29 | cbvralw 3293 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗)) |
31 | 30 | a1i 11 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗))) |
32 | 25, 31 | bitrd 278 | . . . 4 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗))) |
33 | 32 | cbvrexvw 3225 | . . 3 ⊢ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗)) |
34 | 23, 33 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗)) |
35 | 1, 2, 3, 22, 34 | climinf2lem 45232 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2875 ∀wral 3050 ∃wrex 3059 class class class wbr 5149 ran crn 5679 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 infcinf 9466 ℝcr 11139 1c1 11141 + caddc 11143 ℝ*cxr 11279 < clt 11280 ≤ cle 11281 ℤcz 12591 ℤ≥cuz 12855 ⇝ cli 15464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-fz 13520 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 |
This theorem is referenced by: climinf2mpt 45240 climinfmpt 45241 climinf3 45242 |
Copyright terms: Public domain | W3C validator |