Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf2 Structured version   Visualization version   GIF version

Theorem climinf2 40457
Description: A convergent, non-increasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf2.k 𝑘𝜑
climinf2.n 𝑘𝐹
climinf2.z 𝑍 = (ℤ𝑀)
climinf2.m (𝜑𝑀 ∈ ℤ)
climinf2.f (𝜑𝐹:𝑍⟶ℝ)
climinf2.l ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf2.e (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
Assertion
Ref Expression
climinf2 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑘,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem climinf2
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climinf2.z . 2 𝑍 = (ℤ𝑀)
2 climinf2.m . 2 (𝜑𝑀 ∈ ℤ)
3 climinf2.f . 2 (𝜑𝐹:𝑍⟶ℝ)
4 climinf2.k . . . . 5 𝑘𝜑
5 nfv 1995 . . . . 5 𝑘 𝑗𝑍
64, 5nfan 1980 . . . 4 𝑘(𝜑𝑗𝑍)
7 climinf2.n . . . . . 6 𝑘𝐹
8 nfcv 2913 . . . . . 6 𝑘(𝑗 + 1)
97, 8nffv 6339 . . . . 5 𝑘(𝐹‘(𝑗 + 1))
10 nfcv 2913 . . . . 5 𝑘
11 nfcv 2913 . . . . . 6 𝑘𝑗
127, 11nffv 6339 . . . . 5 𝑘(𝐹𝑗)
139, 10, 12nfbr 4833 . . . 4 𝑘(𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗)
146, 13nfim 1977 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗))
15 eleq1w 2833 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 614 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 fvoveq1 6816 . . . . 5 (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1)))
18 fveq2 6332 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1917, 18breq12d 4799 . . . 4 (𝑘 = 𝑗 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗)))
2016, 19imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘)) ↔ ((𝜑𝑗𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗))))
21 climinf2.l . . 3 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
2214, 20, 21chvar 2424 . 2 ((𝜑𝑗𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗))
23 climinf2.e . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
24 nfv 1995 . . . 4 𝑦𝑘𝑍 𝑥 ≤ (𝐹𝑘)
25 nfv 1995 . . . 4 𝑥𝑗𝑍 𝑦 ≤ (𝐹𝑗)
26 breq1 4789 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑘) ↔ 𝑦 ≤ (𝐹𝑘)))
2726ralbidv 3135 . . . . 5 (𝑥 = 𝑦 → (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ↔ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘)))
28 nfv 1995 . . . . . . 7 𝑗 𝑦 ≤ (𝐹𝑘)
29 nfcv 2913 . . . . . . . 8 𝑘𝑦
3029, 10, 12nfbr 4833 . . . . . . 7 𝑘 𝑦 ≤ (𝐹𝑗)
3118breq2d 4798 . . . . . . 7 (𝑘 = 𝑗 → (𝑦 ≤ (𝐹𝑘) ↔ 𝑦 ≤ (𝐹𝑗)))
3228, 30, 31cbvral 3316 . . . . . 6 (∀𝑘𝑍 𝑦 ≤ (𝐹𝑘) ↔ ∀𝑗𝑍 𝑦 ≤ (𝐹𝑗))
3332a1i 11 . . . . 5 (𝑥 = 𝑦 → (∀𝑘𝑍 𝑦 ≤ (𝐹𝑘) ↔ ∀𝑗𝑍 𝑦 ≤ (𝐹𝑗)))
3427, 33bitrd 268 . . . 4 (𝑥 = 𝑦 → (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ↔ ∀𝑗𝑍 𝑦 ≤ (𝐹𝑗)))
3524, 25, 34cbvrex 3317 . . 3 (∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ↔ ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝑦 ≤ (𝐹𝑗))
3623, 35sylib 208 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝑦 ≤ (𝐹𝑗))
371, 2, 3, 22, 36climinf2lem 40456 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wnf 1856  wcel 2145  wnfc 2900  wral 3061  wrex 3062   class class class wbr 4786  ran crn 5250  wf 6027  cfv 6031  (class class class)co 6793  infcinf 8503  cr 10137  1c1 10139   + caddc 10141  *cxr 10275   < clt 10276  cle 10277  cz 11579  cuz 11888  cli 14423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427
This theorem is referenced by:  climinf2mpt  40464  climinfmpt  40465  climinf3  40466
  Copyright terms: Public domain W3C validator