Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf2 Structured version   Visualization version   GIF version

Theorem climinf2 42342
 Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf2.k 𝑘𝜑
climinf2.n 𝑘𝐹
climinf2.z 𝑍 = (ℤ𝑀)
climinf2.m (𝜑𝑀 ∈ ℤ)
climinf2.f (𝜑𝐹:𝑍⟶ℝ)
climinf2.l ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf2.e (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
Assertion
Ref Expression
climinf2 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑘,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem climinf2
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climinf2.z . 2 𝑍 = (ℤ𝑀)
2 climinf2.m . 2 (𝜑𝑀 ∈ ℤ)
3 climinf2.f . 2 (𝜑𝐹:𝑍⟶ℝ)
4 climinf2.k . . . . 5 𝑘𝜑
5 nfv 1915 . . . . 5 𝑘 𝑗𝑍
64, 5nfan 1900 . . . 4 𝑘(𝜑𝑗𝑍)
7 climinf2.n . . . . . 6 𝑘𝐹
8 nfcv 2958 . . . . . 6 𝑘(𝑗 + 1)
97, 8nffv 6659 . . . . 5 𝑘(𝐹‘(𝑗 + 1))
10 nfcv 2958 . . . . 5 𝑘
11 nfcv 2958 . . . . . 6 𝑘𝑗
127, 11nffv 6659 . . . . 5 𝑘(𝐹𝑗)
139, 10, 12nfbr 5080 . . . 4 𝑘(𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗)
146, 13nfim 1897 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗))
15 eleq1w 2875 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 631 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 fvoveq1 7162 . . . . 5 (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1)))
18 fveq2 6649 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1917, 18breq12d 5046 . . . 4 (𝑘 = 𝑗 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗)))
2016, 19imbi12d 348 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘)) ↔ ((𝜑𝑗𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗))))
21 climinf2.l . . 3 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
2214, 20, 21chvarfv 2241 . 2 ((𝜑𝑗𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗))
23 climinf2.e . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
24 breq1 5036 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑘) ↔ 𝑦 ≤ (𝐹𝑘)))
2524ralbidv 3165 . . . . 5 (𝑥 = 𝑦 → (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ↔ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘)))
26 nfv 1915 . . . . . . 7 𝑗 𝑦 ≤ (𝐹𝑘)
27 nfcv 2958 . . . . . . . 8 𝑘𝑦
2827, 10, 12nfbr 5080 . . . . . . 7 𝑘 𝑦 ≤ (𝐹𝑗)
2918breq2d 5045 . . . . . . 7 (𝑘 = 𝑗 → (𝑦 ≤ (𝐹𝑘) ↔ 𝑦 ≤ (𝐹𝑗)))
3026, 28, 29cbvralw 3390 . . . . . 6 (∀𝑘𝑍 𝑦 ≤ (𝐹𝑘) ↔ ∀𝑗𝑍 𝑦 ≤ (𝐹𝑗))
3130a1i 11 . . . . 5 (𝑥 = 𝑦 → (∀𝑘𝑍 𝑦 ≤ (𝐹𝑘) ↔ ∀𝑗𝑍 𝑦 ≤ (𝐹𝑗)))
3225, 31bitrd 282 . . . 4 (𝑥 = 𝑦 → (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ↔ ∀𝑗𝑍 𝑦 ≤ (𝐹𝑗)))
3332cbvrexvw 3400 . . 3 (∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ↔ ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝑦 ≤ (𝐹𝑗))
3423, 33sylib 221 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝑦 ≤ (𝐹𝑗))
351, 2, 3, 22, 34climinf2lem 42341 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2112  Ⅎwnfc 2939  ∀wral 3109  ∃wrex 3110   class class class wbr 5033  ran crn 5524  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  infcinf 8893  ℝcr 10529  1c1 10531   + caddc 10533  ℝ*cxr 10667   < clt 10668   ≤ cle 10669  ℤcz 11973  ℤ≥cuz 12235   ⇝ cli 14837 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841 This theorem is referenced by:  climinf2mpt  42349  climinfmpt  42350  climinf3  42351
 Copyright terms: Public domain W3C validator