![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climinf2 | Structured version Visualization version GIF version |
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climinf2.k | β’ β²ππ |
climinf2.n | β’ β²ππΉ |
climinf2.z | β’ π = (β€β₯βπ) |
climinf2.m | β’ (π β π β β€) |
climinf2.f | β’ (π β πΉ:πβΆβ) |
climinf2.l | β’ ((π β§ π β π) β (πΉβ(π + 1)) β€ (πΉβπ)) |
climinf2.e | β’ (π β βπ₯ β β βπ β π π₯ β€ (πΉβπ)) |
Ref | Expression |
---|---|
climinf2 | β’ (π β πΉ β inf(ran πΉ, β*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climinf2.z | . 2 β’ π = (β€β₯βπ) | |
2 | climinf2.m | . 2 β’ (π β π β β€) | |
3 | climinf2.f | . 2 β’ (π β πΉ:πβΆβ) | |
4 | climinf2.k | . . . . 5 β’ β²ππ | |
5 | nfv 1915 | . . . . 5 β’ β²π π β π | |
6 | 4, 5 | nfan 1900 | . . . 4 β’ β²π(π β§ π β π) |
7 | climinf2.n | . . . . . 6 β’ β²ππΉ | |
8 | nfcv 2901 | . . . . . 6 β’ β²π(π + 1) | |
9 | 7, 8 | nffv 6900 | . . . . 5 β’ β²π(πΉβ(π + 1)) |
10 | nfcv 2901 | . . . . 5 β’ β²π β€ | |
11 | nfcv 2901 | . . . . . 6 β’ β²ππ | |
12 | 7, 11 | nffv 6900 | . . . . 5 β’ β²π(πΉβπ) |
13 | 9, 10, 12 | nfbr 5194 | . . . 4 β’ β²π(πΉβ(π + 1)) β€ (πΉβπ) |
14 | 6, 13 | nfim 1897 | . . 3 β’ β²π((π β§ π β π) β (πΉβ(π + 1)) β€ (πΉβπ)) |
15 | eleq1w 2814 | . . . . 5 β’ (π = π β (π β π β π β π)) | |
16 | 15 | anbi2d 627 | . . . 4 β’ (π = π β ((π β§ π β π) β (π β§ π β π))) |
17 | fvoveq1 7434 | . . . . 5 β’ (π = π β (πΉβ(π + 1)) = (πΉβ(π + 1))) | |
18 | fveq2 6890 | . . . . 5 β’ (π = π β (πΉβπ) = (πΉβπ)) | |
19 | 17, 18 | breq12d 5160 | . . . 4 β’ (π = π β ((πΉβ(π + 1)) β€ (πΉβπ) β (πΉβ(π + 1)) β€ (πΉβπ))) |
20 | 16, 19 | imbi12d 343 | . . 3 β’ (π = π β (((π β§ π β π) β (πΉβ(π + 1)) β€ (πΉβπ)) β ((π β§ π β π) β (πΉβ(π + 1)) β€ (πΉβπ)))) |
21 | climinf2.l | . . 3 β’ ((π β§ π β π) β (πΉβ(π + 1)) β€ (πΉβπ)) | |
22 | 14, 20, 21 | chvarfv 2231 | . 2 β’ ((π β§ π β π) β (πΉβ(π + 1)) β€ (πΉβπ)) |
23 | climinf2.e | . . 3 β’ (π β βπ₯ β β βπ β π π₯ β€ (πΉβπ)) | |
24 | breq1 5150 | . . . . . 6 β’ (π₯ = π¦ β (π₯ β€ (πΉβπ) β π¦ β€ (πΉβπ))) | |
25 | 24 | ralbidv 3175 | . . . . 5 β’ (π₯ = π¦ β (βπ β π π₯ β€ (πΉβπ) β βπ β π π¦ β€ (πΉβπ))) |
26 | nfv 1915 | . . . . . . 7 β’ β²π π¦ β€ (πΉβπ) | |
27 | nfcv 2901 | . . . . . . . 8 β’ β²ππ¦ | |
28 | 27, 10, 12 | nfbr 5194 | . . . . . . 7 β’ β²π π¦ β€ (πΉβπ) |
29 | 18 | breq2d 5159 | . . . . . . 7 β’ (π = π β (π¦ β€ (πΉβπ) β π¦ β€ (πΉβπ))) |
30 | 26, 28, 29 | cbvralw 3301 | . . . . . 6 β’ (βπ β π π¦ β€ (πΉβπ) β βπ β π π¦ β€ (πΉβπ)) |
31 | 30 | a1i 11 | . . . . 5 β’ (π₯ = π¦ β (βπ β π π¦ β€ (πΉβπ) β βπ β π π¦ β€ (πΉβπ))) |
32 | 25, 31 | bitrd 278 | . . . 4 β’ (π₯ = π¦ β (βπ β π π₯ β€ (πΉβπ) β βπ β π π¦ β€ (πΉβπ))) |
33 | 32 | cbvrexvw 3233 | . . 3 β’ (βπ₯ β β βπ β π π₯ β€ (πΉβπ) β βπ¦ β β βπ β π π¦ β€ (πΉβπ)) |
34 | 23, 33 | sylib 217 | . 2 β’ (π β βπ¦ β β βπ β π π¦ β€ (πΉβπ)) |
35 | 1, 2, 3, 22, 34 | climinf2lem 44720 | 1 β’ (π β πΉ β inf(ran πΉ, β*, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β²wnf 1783 β wcel 2104 β²wnfc 2881 βwral 3059 βwrex 3068 class class class wbr 5147 ran crn 5676 βΆwf 6538 βcfv 6542 (class class class)co 7411 infcinf 9438 βcr 11111 1c1 11113 + caddc 11115 β*cxr 11251 < clt 11252 β€ cle 11253 β€cz 12562 β€β₯cuz 12826 β cli 15432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-fz 13489 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 |
This theorem is referenced by: climinf2mpt 44728 climinfmpt 44729 climinf3 44730 |
Copyright terms: Public domain | W3C validator |