| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crngridl | Structured version Visualization version GIF version | ||
| Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| crng2idl.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
| crngridl.o | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| crngridl | ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crng2idl.i | . 2 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 2 | eqidd 2732 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅)) | |
| 3 | crngridl.o | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 3, 4 | opprbas 20262 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑂)) |
| 7 | ssv 3959 | . . . . 5 ⊢ (Base‘𝑅) ⊆ V | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ⊆ V) |
| 9 | eqid 2731 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 10 | 3, 9 | oppradd 20263 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑂) |
| 11 | 10 | oveqi 7359 | . . . . 5 ⊢ (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦) |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
| 13 | ovexd 7381 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) ∈ V) | |
| 14 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 15 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 16 | 4, 14, 3, 15 | crngoppr 20260 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑂)𝑦)) |
| 17 | 16 | 3expb 1120 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑂)𝑦)) |
| 18 | 2, 6, 8, 12, 13, 17 | lidlrsppropd 21182 | . . 3 ⊢ (𝑅 ∈ CRing → ((LIdeal‘𝑅) = (LIdeal‘𝑂) ∧ (RSpan‘𝑅) = (RSpan‘𝑂))) |
| 19 | 18 | simpld 494 | . 2 ⊢ (𝑅 ∈ CRing → (LIdeal‘𝑅) = (LIdeal‘𝑂)) |
| 20 | 1, 19 | eqtrid 2778 | 1 ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 CRingccrg 20153 opprcoppr 20255 LIdealclidl 21144 RSpancrsp 21145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-cmn 19695 df-mgp 20060 df-cring 20155 df-oppr 20256 df-lss 20866 df-lsp 20906 df-sra 21108 df-rgmod 21109 df-lidl 21146 df-rsp 21147 |
| This theorem is referenced by: crng2idl 21219 crngmxidl 33432 |
| Copyright terms: Public domain | W3C validator |