MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngridl Structured version   Visualization version   GIF version

Theorem crngridl 20005
Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
crng2idl.i 𝐼 = (LIdeal‘𝑅)
crngridl.o 𝑂 = (oppr𝑅)
Assertion
Ref Expression
crngridl (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂))

Proof of Theorem crngridl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crng2idl.i . 2 𝐼 = (LIdeal‘𝑅)
2 eqidd 2822 . . . 4 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅))
3 crngridl.o . . . . . 6 𝑂 = (oppr𝑅)
4 eqid 2821 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
53, 4opprbas 19373 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
65a1i 11 . . . 4 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑂))
7 ssv 3990 . . . . 5 (Base‘𝑅) ⊆ V
87a1i 11 . . . 4 (𝑅 ∈ CRing → (Base‘𝑅) ⊆ V)
9 eqid 2821 . . . . . . 7 (+g𝑅) = (+g𝑅)
103, 9oppradd 19374 . . . . . 6 (+g𝑅) = (+g𝑂)
1110oveqi 7163 . . . . 5 (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦)
1211a1i 11 . . . 4 ((𝑅 ∈ CRing ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦))
13 ovexd 7185 . . . 4 ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) ∈ V)
14 eqid 2821 . . . . . 6 (.r𝑅) = (.r𝑅)
15 eqid 2821 . . . . . 6 (.r𝑂) = (.r𝑂)
164, 14, 3, 15crngoppr 19371 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑂)𝑦))
17163expb 1116 . . . 4 ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑂)𝑦))
182, 6, 8, 12, 13, 17lidlrsppropd 19997 . . 3 (𝑅 ∈ CRing → ((LIdeal‘𝑅) = (LIdeal‘𝑂) ∧ (RSpan‘𝑅) = (RSpan‘𝑂)))
1918simpld 497 . 2 (𝑅 ∈ CRing → (LIdeal‘𝑅) = (LIdeal‘𝑂))
201, 19syl5eq 2868 1 (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  .rcmulr 16560  CRingccrg 19292  opprcoppr 19366  LIdealclidl 19936  RSpancrsp 19937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-cmn 18902  df-mgp 19234  df-cring 19294  df-oppr 19367  df-lss 19698  df-lsp 19738  df-sra 19938  df-rgmod 19939  df-lidl 19940  df-rsp 19941
This theorem is referenced by:  crng2idl  20006
  Copyright terms: Public domain W3C validator