MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leabsd Structured version   Visualization version   GIF version

Theorem leabsd 14867
Description: A real number is less than or equal to its absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
resqrcld.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
leabsd (𝜑𝐴 ≤ (abs‘𝐴))

Proof of Theorem leabsd
StepHypRef Expression
1 resqrcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 leabs 14752 . 2 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
31, 2syl 17 1 (𝜑𝐴 ≤ (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114   class class class wbr 5031  cfv 6340  cr 10617  cle 10757  abscabs 14686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-sup 8982  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-n0 11980  df-z 12066  df-uz 12328  df-rp 12476  df-seq 13464  df-exp 13525  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688
This theorem is referenced by:  lo1bddrp  14975  o1rlimmul  15069  nm2dif  23381  trirn  24155  bddiblnc  24597  mtestbdd  25155  abscxpbnd  25497  cxploglim2  25719  logexprlim  25964  rplogsumlem2  26224  dchrvmasumlem2  26237  dchrvmasumlem3  26238  dchrisum0flblem1  26247  dchrisum0fno1  26250  dchrisum0lem1  26255  mulog2sumlem2  26274  selberglem2  26285  chpdifbndlem1  26292  selberg3lem1  26296  pntrsumo1  26304  pntrlog2bndlem2  26317  pntrlog2bndlem3  26318  leopnmid  30076  dnibndlem7  34310  dnibndlem8  34311  dnibndlem12  34315  geomcau  35563  radcnvrat  41493  rexabslelem  42519  climleltrp  42782  ioodvbdlimc1lem1  43037  ioodvbdlimc1lem2  43038  ioodvbdlimc2lem  43040  fourierdlem77  43289  ioorrnopnlem  43410  sge0isum  43530  hoicvr  43651  smflimlem4  43871  smfmullem1  43887
  Copyright terms: Public domain W3C validator