MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leabsd Structured version   Visualization version   GIF version

Theorem leabsd 15388
Description: A real number is less than or equal to its absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
resqrcld.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
leabsd (𝜑𝐴 ≤ (abs‘𝐴))

Proof of Theorem leabsd
StepHypRef Expression
1 resqrcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 leabs 15272 . 2 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
31, 2syl 17 1 (𝜑𝐴 ≤ (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5110  cfv 6514  cr 11074  cle 11216  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  lo1bddrp  15498  o1rlimmul  15592  nm2dif  24520  trirn  25307  bddiblnc  25750  mtestbdd  26321  abscxpbnd  26670  cxploglim2  26896  logexprlim  27143  rplogsumlem2  27403  dchrvmasumlem2  27416  dchrvmasumlem3  27417  dchrisum0flblem1  27426  dchrisum0fno1  27429  dchrisum0lem1  27434  mulog2sumlem2  27453  selberglem2  27464  chpdifbndlem1  27471  selberg3lem1  27475  pntrsumo1  27483  pntrlog2bndlem2  27496  pntrlog2bndlem3  27497  leopnmid  32074  dnibndlem7  36479  dnibndlem8  36480  dnibndlem12  36484  geomcau  37760  radcnvrat  44310  rexabslelem  45421  climleltrp  45681  ioodvbdlimc1lem1  45936  ioodvbdlimc1lem2  45937  ioodvbdlimc2lem  45939  fourierdlem77  46188  ioorrnopnlem  46309  sge0isum  46432  hoicvr  46553  smflimlem4  46779  smfmullem1  46796
  Copyright terms: Public domain W3C validator