| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-chn1 | Structured version Visualization version GIF version | ||
| Description: Example: a doubleton of twos is a valid chain under the identity relation and domain of integers. (Contributed by Ender Ting, 17-Jan-2026.) |
| Ref | Expression |
|---|---|
| ex-chn1 | ⊢ 〈“22”〉 ∈ ( I Chain ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12510 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | s2cl 14791 | . . 3 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → 〈“22”〉 ∈ Word ℤ) | |
| 3 | 1, 1, 2 | mp2an 692 | . 2 ⊢ 〈“22”〉 ∈ Word ℤ |
| 4 | s2dm 14803 | . . . . . . 7 ⊢ dom 〈“22”〉 = {0, 1} | |
| 5 | 4 | difeq1i 4071 | . . . . . 6 ⊢ (dom 〈“22”〉 ∖ {0}) = ({0, 1} ∖ {0}) |
| 6 | 5 | eleq2i 2823 | . . . . 5 ⊢ (𝑥 ∈ (dom 〈“22”〉 ∖ {0}) ↔ 𝑥 ∈ ({0, 1} ∖ {0})) |
| 7 | 6 | biimpi 216 | . . . 4 ⊢ (𝑥 ∈ (dom 〈“22”〉 ∖ {0}) → 𝑥 ∈ ({0, 1} ∖ {0})) |
| 8 | difprsnss 4750 | . . . . . 6 ⊢ ({0, 1} ∖ {0}) ⊆ {1} | |
| 9 | 8 | sseli 3925 | . . . . 5 ⊢ (𝑥 ∈ ({0, 1} ∖ {0}) → 𝑥 ∈ {1}) |
| 10 | 9 | elsnd 4593 | . . . 4 ⊢ (𝑥 ∈ ({0, 1} ∖ {0}) → 𝑥 = 1) |
| 11 | eqid 2731 | . . . . . . 7 ⊢ 2 = 2 | |
| 12 | 2ex 12208 | . . . . . . . 8 ⊢ 2 ∈ V | |
| 13 | 12 | ideq 5797 | . . . . . . 7 ⊢ (2 I 2 ↔ 2 = 2) |
| 14 | 11, 13 | mpbir 231 | . . . . . 6 ⊢ 2 I 2 |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑥 = 1 → 2 I 2) |
| 16 | oveq1 7359 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝑥 − 1) = (1 − 1)) | |
| 17 | 1m1e0 12203 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
| 18 | 16, 17 | eqtrdi 2782 | . . . . . 6 ⊢ (𝑥 = 1 → (𝑥 − 1) = 0) |
| 19 | fveq2 6828 | . . . . . . 7 ⊢ ((𝑥 − 1) = 0 → (〈“22”〉‘(𝑥 − 1)) = (〈“22”〉‘0)) | |
| 20 | s2fv0 14800 | . . . . . . . 8 ⊢ (2 ∈ V → (〈“22”〉‘0) = 2) | |
| 21 | 12, 20 | ax-mp 5 | . . . . . . 7 ⊢ (〈“22”〉‘0) = 2 |
| 22 | 19, 21 | eqtr2di 2783 | . . . . . 6 ⊢ ((𝑥 − 1) = 0 → 2 = (〈“22”〉‘(𝑥 − 1))) |
| 23 | 18, 22 | syl 17 | . . . . 5 ⊢ (𝑥 = 1 → 2 = (〈“22”〉‘(𝑥 − 1))) |
| 24 | fveq2 6828 | . . . . . 6 ⊢ (𝑥 = 1 → (〈“22”〉‘𝑥) = (〈“22”〉‘1)) | |
| 25 | s2fv1 14801 | . . . . . . 7 ⊢ (2 ∈ V → (〈“22”〉‘1) = 2) | |
| 26 | 12, 25 | ax-mp 5 | . . . . . 6 ⊢ (〈“22”〉‘1) = 2 |
| 27 | 24, 26 | eqtr2di 2783 | . . . . 5 ⊢ (𝑥 = 1 → 2 = (〈“22”〉‘𝑥)) |
| 28 | 15, 23, 27 | 3brtr3d 5124 | . . . 4 ⊢ (𝑥 = 1 → (〈“22”〉‘(𝑥 − 1)) I (〈“22”〉‘𝑥)) |
| 29 | 7, 10, 28 | 3syl 18 | . . 3 ⊢ (𝑥 ∈ (dom 〈“22”〉 ∖ {0}) → (〈“22”〉‘(𝑥 − 1)) I (〈“22”〉‘𝑥)) |
| 30 | 29 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ (dom 〈“22”〉 ∖ {0})(〈“22”〉‘(𝑥 − 1)) I (〈“22”〉‘𝑥) |
| 31 | ischn 18519 | . 2 ⊢ (〈“22”〉 ∈ ( I Chain ℤ) ↔ (〈“22”〉 ∈ Word ℤ ∧ ∀𝑥 ∈ (dom 〈“22”〉 ∖ {0})(〈“22”〉‘(𝑥 − 1)) I (〈“22”〉‘𝑥))) | |
| 32 | 3, 30, 31 | mpbir2an 711 | 1 ⊢ 〈“22”〉 ∈ ( I Chain ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∖ cdif 3894 {csn 4575 {cpr 4577 class class class wbr 5093 I cid 5513 dom cdm 5619 ‘cfv 6487 (class class class)co 7352 0cc0 11012 1c1 11013 − cmin 11350 2c2 12186 ℤcz 12474 Word cword 14426 〈“cs2 14754 Chain cchn 18517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-fzo 13561 df-hash 14244 df-word 14427 df-concat 14484 df-s1 14510 df-s2 14761 df-chn 18518 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |