Proof of Theorem ex-chn2
| Step | Hyp | Ref
| Expression |
| 1 | | s3cli 14780 |
. 2
⊢
〈“ℤℕℚ”〉 ∈ Word
V |
| 2 | | zex 12469 |
. . . . . . . . . 10
⊢ ℤ
∈ V |
| 3 | | nnex 12123 |
. . . . . . . . . 10
⊢ ℕ
∈ V |
| 4 | | qex 12851 |
. . . . . . . . . 10
⊢ ℚ
∈ V |
| 5 | | s3fn 14810 |
. . . . . . . . . 10
⊢ ((ℤ
∈ V ∧ ℕ ∈ V ∧ ℚ ∈ V) →
〈“ℤℕℚ”〉 Fn {0, 1, 2}) |
| 6 | 2, 3, 4, 5 | mp3an 1463 |
. . . . . . . . 9
⊢
〈“ℤℕℚ”〉 Fn {0, 1,
2} |
| 7 | 6 | fndmi 6581 |
. . . . . . . 8
⊢ dom
〈“ℤℕℚ”〉 = {0, 1, 2} |
| 8 | 7 | difeq1i 4070 |
. . . . . . 7
⊢ (dom
〈“ℤℕℚ”〉 ∖ {0}) = ({0, 1, 2}
∖ {0}) |
| 9 | | tprot 4700 |
. . . . . . . 8
⊢ {0, 1, 2}
= {1, 2, 0} |
| 10 | 9 | difeq1i 4070 |
. . . . . . 7
⊢ ({0, 1,
2} ∖ {0}) = ({1, 2, 0} ∖ {0}) |
| 11 | | ax-1ne0 11067 |
. . . . . . . 8
⊢ 1 ≠
0 |
| 12 | | 2ne0 12221 |
. . . . . . . 8
⊢ 2 ≠
0 |
| 13 | | diftpsn3 4752 |
. . . . . . . 8
⊢ ((1 ≠
0 ∧ 2 ≠ 0) → ({1, 2, 0} ∖ {0}) = {1, 2}) |
| 14 | 11, 12, 13 | mp2an 692 |
. . . . . . 7
⊢ ({1, 2,
0} ∖ {0}) = {1, 2} |
| 15 | 8, 10, 14 | 3eqtri 2757 |
. . . . . 6
⊢ (dom
〈“ℤℕℚ”〉 ∖ {0}) = {1,
2} |
| 16 | 15 | eleq2i 2821 |
. . . . 5
⊢ (𝑥 ∈ (dom
〈“ℤℕℚ”〉 ∖ {0}) ↔ 𝑥 ∈ {1, 2}) |
| 17 | 16 | biimpi 216 |
. . . 4
⊢ (𝑥 ∈ (dom
〈“ℤℕℚ”〉 ∖ {0}) → 𝑥 ∈ {1, 2}) |
| 18 | | elpri 4598 |
. . . 4
⊢ (𝑥 ∈ {1, 2} → (𝑥 = 1 ∨ 𝑥 = 2)) |
| 19 | | znnen 16113 |
. . . . . . 7
⊢ ℤ
≈ ℕ |
| 20 | 19 | a1i 11 |
. . . . . 6
⊢ (𝑥 = 1 → ℤ ≈
ℕ) |
| 21 | | oveq1 7348 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (𝑥 − 1) = (1 − 1)) |
| 22 | | 1m1e0 12189 |
. . . . . . . . 9
⊢ (1
− 1) = 0 |
| 23 | 21, 22 | eqtrdi 2781 |
. . . . . . . 8
⊢ (𝑥 = 1 → (𝑥 − 1) = 0) |
| 24 | 23 | fveq2d 6821 |
. . . . . . 7
⊢ (𝑥 = 1 →
(〈“ℤℕℚ”〉‘(𝑥 − 1)) =
(〈“ℤℕℚ”〉‘0)) |
| 25 | | s3fv0 14790 |
. . . . . . . 8
⊢ (ℤ
∈ V → (〈“ℤℕℚ”〉‘0) =
ℤ) |
| 26 | 2, 25 | ax-mp 5 |
. . . . . . 7
⊢
(〈“ℤℕℚ”〉‘0) =
ℤ |
| 27 | 24, 26 | eqtrdi 2781 |
. . . . . 6
⊢ (𝑥 = 1 →
(〈“ℤℕℚ”〉‘(𝑥 − 1)) = ℤ) |
| 28 | | fveq2 6817 |
. . . . . . 7
⊢ (𝑥 = 1 →
(〈“ℤℕℚ”〉‘𝑥) =
(〈“ℤℕℚ”〉‘1)) |
| 29 | | s3fv1 14791 |
. . . . . . . 8
⊢ (ℕ
∈ V → (〈“ℤℕℚ”〉‘1) =
ℕ) |
| 30 | 3, 29 | ax-mp 5 |
. . . . . . 7
⊢
(〈“ℤℕℚ”〉‘1) =
ℕ |
| 31 | 28, 30 | eqtrdi 2781 |
. . . . . 6
⊢ (𝑥 = 1 →
(〈“ℤℕℚ”〉‘𝑥) = ℕ) |
| 32 | 20, 27, 31 | 3brtr4d 5121 |
. . . . 5
⊢ (𝑥 = 1 →
(〈“ℤℕℚ”〉‘(𝑥 − 1)) ≈
(〈“ℤℕℚ”〉‘𝑥)) |
| 33 | | qnnen 16114 |
. . . . . . . 8
⊢ ℚ
≈ ℕ |
| 34 | 33 | ensymi 8921 |
. . . . . . 7
⊢ ℕ
≈ ℚ |
| 35 | 34 | a1i 11 |
. . . . . 6
⊢ (𝑥 = 2 → ℕ ≈
ℚ) |
| 36 | | oveq1 7348 |
. . . . . . . . 9
⊢ (𝑥 = 2 → (𝑥 − 1) = (2 − 1)) |
| 37 | | 2m1e1 12238 |
. . . . . . . . 9
⊢ (2
− 1) = 1 |
| 38 | 36, 37 | eqtrdi 2781 |
. . . . . . . 8
⊢ (𝑥 = 2 → (𝑥 − 1) = 1) |
| 39 | 38 | fveq2d 6821 |
. . . . . . 7
⊢ (𝑥 = 2 →
(〈“ℤℕℚ”〉‘(𝑥 − 1)) =
(〈“ℤℕℚ”〉‘1)) |
| 40 | 39, 30 | eqtrdi 2781 |
. . . . . 6
⊢ (𝑥 = 2 →
(〈“ℤℕℚ”〉‘(𝑥 − 1)) = ℕ) |
| 41 | | fveq2 6817 |
. . . . . . 7
⊢ (𝑥 = 2 →
(〈“ℤℕℚ”〉‘𝑥) =
(〈“ℤℕℚ”〉‘2)) |
| 42 | | s3fv2 14792 |
. . . . . . . 8
⊢ (ℚ
∈ V → (〈“ℤℕℚ”〉‘2) =
ℚ) |
| 43 | 4, 42 | ax-mp 5 |
. . . . . . 7
⊢
(〈“ℤℕℚ”〉‘2) =
ℚ |
| 44 | 41, 43 | eqtrdi 2781 |
. . . . . 6
⊢ (𝑥 = 2 →
(〈“ℤℕℚ”〉‘𝑥) = ℚ) |
| 45 | 35, 40, 44 | 3brtr4d 5121 |
. . . . 5
⊢ (𝑥 = 2 →
(〈“ℤℕℚ”〉‘(𝑥 − 1)) ≈
(〈“ℤℕℚ”〉‘𝑥)) |
| 46 | 32, 45 | jaoi 857 |
. . . 4
⊢ ((𝑥 = 1 ∨ 𝑥 = 2) →
(〈“ℤℕℚ”〉‘(𝑥 − 1)) ≈
(〈“ℤℕℚ”〉‘𝑥)) |
| 47 | 17, 18, 46 | 3syl 18 |
. . 3
⊢ (𝑥 ∈ (dom
〈“ℤℕℚ”〉 ∖ {0}) →
(〈“ℤℕℚ”〉‘(𝑥 − 1)) ≈
(〈“ℤℕℚ”〉‘𝑥)) |
| 48 | 47 | rgen 3047 |
. 2
⊢
∀𝑥 ∈
(dom 〈“ℤℕℚ”〉 ∖
{0})(〈“ℤℕℚ”〉‘(𝑥 − 1)) ≈
(〈“ℤℕℚ”〉‘𝑥) |
| 49 | | ischn 18505 |
. 2
⊢
(〈“ℤℕℚ”〉 ∈ ( ≈ Chain
V) ↔ (〈“ℤℕℚ”〉 ∈ Word V ∧
∀𝑥 ∈ (dom
〈“ℤℕℚ”〉 ∖
{0})(〈“ℤℕℚ”〉‘(𝑥 − 1)) ≈
(〈“ℤℕℚ”〉‘𝑥))) |
| 50 | 1, 48, 49 | mpbir2an 711 |
1
⊢
〈“ℤℕℚ”〉 ∈ ( ≈ Chain
V) |