Proof of Theorem expgt0b
| Step | Hyp | Ref
| Expression |
| 1 | | expgt0b.n |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) |
| 3 | | expgt0b.m |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 4 | 3 | nnzd 12620 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 5 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝐴) → 𝑁 ∈ ℤ) |
| 6 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴) |
| 7 | | expgt0 14118 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 <
𝐴) → 0 < (𝐴↑𝑁)) |
| 8 | 2, 5, 6, 7 | syl3anc 1373 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < (𝐴↑𝑁)) |
| 9 | 8 | ex 412 |
. 2
⊢ (𝜑 → (0 < 𝐴 → 0 < (𝐴↑𝑁))) |
| 10 | | 0red 11243 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℝ) |
| 11 | 10, 1 | lttrid 11378 |
. . . 4
⊢ (𝜑 → (0 < 𝐴 ↔ ¬ (0 = 𝐴 ∨ 𝐴 < 0))) |
| 12 | 11 | notbid 318 |
. . 3
⊢ (𝜑 → (¬ 0 < 𝐴 ↔ ¬ ¬ (0 = 𝐴 ∨ 𝐴 < 0))) |
| 13 | | notnotr 130 |
. . . 4
⊢ (¬
¬ (0 = 𝐴 ∨ 𝐴 < 0) → (0 = 𝐴 ∨ 𝐴 < 0)) |
| 14 | | 0re 11242 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 15 | 14 | ltnri 11349 |
. . . . . . . . 9
⊢ ¬ 0
< 0 |
| 16 | 3 | 0expd 14162 |
. . . . . . . . . 10
⊢ (𝜑 → (0↑𝑁) = 0) |
| 17 | 16 | breq2d 5136 |
. . . . . . . . 9
⊢ (𝜑 → (0 < (0↑𝑁) ↔ 0 <
0)) |
| 18 | 15, 17 | mtbiri 327 |
. . . . . . . 8
⊢ (𝜑 → ¬ 0 < (0↑𝑁)) |
| 19 | 18 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 = 𝐴) → ¬ 0 < (0↑𝑁)) |
| 20 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 = 𝐴) → 0 = 𝐴) |
| 21 | 20 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 = 𝐴) → 𝐴 = 0) |
| 22 | 21 | oveq1d 7425 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 = 𝐴) → (𝐴↑𝑁) = (0↑𝑁)) |
| 23 | 22 | breq2d 5136 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 = 𝐴) → (0 < (𝐴↑𝑁) ↔ 0 < (0↑𝑁))) |
| 24 | 19, 23 | mtbird 325 |
. . . . . 6
⊢ ((𝜑 ∧ 0 = 𝐴) → ¬ 0 < (𝐴↑𝑁)) |
| 25 | 24 | ex 412 |
. . . . 5
⊢ (𝜑 → (0 = 𝐴 → ¬ 0 < (𝐴↑𝑁))) |
| 26 | 1 | renegcld 11669 |
. . . . . . . . . 10
⊢ (𝜑 → -𝐴 ∈ ℝ) |
| 27 | 26 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < -𝐴) → -𝐴 ∈ ℝ) |
| 28 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < -𝐴) → 𝑁 ∈ ℤ) |
| 29 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < -𝐴) → 0 < -𝐴) |
| 30 | | expgt0 14118 |
. . . . . . . . 9
⊢ ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 <
-𝐴) → 0 < (-𝐴↑𝑁)) |
| 31 | 27, 28, 29, 30 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < -𝐴) → 0 < (-𝐴↑𝑁)) |
| 32 | 31 | ex 412 |
. . . . . . 7
⊢ (𝜑 → (0 < -𝐴 → 0 < (-𝐴↑𝑁))) |
| 33 | 1 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 34 | | expgt0b.1 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 2 ∥ 𝑁) |
| 35 | | oexpneg 16369 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) |
| 36 | 33, 3, 34, 35 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → (-𝐴↑𝑁) = -(𝐴↑𝑁)) |
| 37 | 36 | breq2d 5136 |
. . . . . . . 8
⊢ (𝜑 → (0 < (-𝐴↑𝑁) ↔ 0 < -(𝐴↑𝑁))) |
| 38 | 37 | biimpd 229 |
. . . . . . 7
⊢ (𝜑 → (0 < (-𝐴↑𝑁) → 0 < -(𝐴↑𝑁))) |
| 39 | 3 | nnnn0d 12567 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 40 | 1, 39 | reexpcld 14186 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) |
| 41 | 40 | renegcld 11669 |
. . . . . . . . 9
⊢ (𝜑 → -(𝐴↑𝑁) ∈ ℝ) |
| 42 | 10, 41 | lttrid 11378 |
. . . . . . . 8
⊢ (𝜑 → (0 < -(𝐴↑𝑁) ↔ ¬ (0 = -(𝐴↑𝑁) ∨ -(𝐴↑𝑁) < 0))) |
| 43 | | pm2.46 882 |
. . . . . . . 8
⊢ (¬ (0
= -(𝐴↑𝑁) ∨ -(𝐴↑𝑁) < 0) → ¬ -(𝐴↑𝑁) < 0) |
| 44 | 42, 43 | biimtrdi 253 |
. . . . . . 7
⊢ (𝜑 → (0 < -(𝐴↑𝑁) → ¬ -(𝐴↑𝑁) < 0)) |
| 45 | 32, 38, 44 | 3syld 60 |
. . . . . 6
⊢ (𝜑 → (0 < -𝐴 → ¬ -(𝐴↑𝑁) < 0)) |
| 46 | 1 | lt0neg1d 11811 |
. . . . . 6
⊢ (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴)) |
| 47 | 40 | lt0neg2d 11812 |
. . . . . . 7
⊢ (𝜑 → (0 < (𝐴↑𝑁) ↔ -(𝐴↑𝑁) < 0)) |
| 48 | 47 | notbid 318 |
. . . . . 6
⊢ (𝜑 → (¬ 0 < (𝐴↑𝑁) ↔ ¬ -(𝐴↑𝑁) < 0)) |
| 49 | 45, 46, 48 | 3imtr4d 294 |
. . . . 5
⊢ (𝜑 → (𝐴 < 0 → ¬ 0 < (𝐴↑𝑁))) |
| 50 | 25, 49 | jaod 859 |
. . . 4
⊢ (𝜑 → ((0 = 𝐴 ∨ 𝐴 < 0) → ¬ 0 < (𝐴↑𝑁))) |
| 51 | 13, 50 | syl5 34 |
. . 3
⊢ (𝜑 → (¬ ¬ (0 = 𝐴 ∨ 𝐴 < 0) → ¬ 0 < (𝐴↑𝑁))) |
| 52 | 12, 51 | sylbid 240 |
. 2
⊢ (𝜑 → (¬ 0 < 𝐴 → ¬ 0 < (𝐴↑𝑁))) |
| 53 | 9, 52 | impcon4bid 227 |
1
⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴↑𝑁))) |