Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgt0b Structured version   Visualization version   GIF version

Theorem expgt0b 32823
Description: A real number 𝐴 raised to an odd integer power is positive iff it is positive. (Contributed by SN, 4-Mar-2023.) Use the more standard ¬ 2 ∥ 𝑁 (Revised by Thierry Arnoux, 14-Jun-2025.)
Hypotheses
Ref Expression
expgt0b.n (𝜑𝐴 ∈ ℝ)
expgt0b.m (𝜑𝑁 ∈ ℕ)
expgt0b.1 (𝜑 → ¬ 2 ∥ 𝑁)
Assertion
Ref Expression
expgt0b (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴𝑁)))

Proof of Theorem expgt0b
StepHypRef Expression
1 expgt0b.n . . . . 5 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
3 expgt0b.m . . . . . 6 (𝜑𝑁 ∈ ℕ)
43nnzd 12638 . . . . 5 (𝜑𝑁 ∈ ℤ)
54adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝑁 ∈ ℤ)
6 simpr 484 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴)
7 expgt0 14133 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴𝑁))
82, 5, 6, 7syl3anc 1370 . . 3 ((𝜑 ∧ 0 < 𝐴) → 0 < (𝐴𝑁))
98ex 412 . 2 (𝜑 → (0 < 𝐴 → 0 < (𝐴𝑁)))
10 0red 11262 . . . . 5 (𝜑 → 0 ∈ ℝ)
1110, 1lttrid 11397 . . . 4 (𝜑 → (0 < 𝐴 ↔ ¬ (0 = 𝐴𝐴 < 0)))
1211notbid 318 . . 3 (𝜑 → (¬ 0 < 𝐴 ↔ ¬ ¬ (0 = 𝐴𝐴 < 0)))
13 notnotr 130 . . . 4 (¬ ¬ (0 = 𝐴𝐴 < 0) → (0 = 𝐴𝐴 < 0))
14 0re 11261 . . . . . . . . . 10 0 ∈ ℝ
1514ltnri 11368 . . . . . . . . 9 ¬ 0 < 0
1630expd 14176 . . . . . . . . . 10 (𝜑 → (0↑𝑁) = 0)
1716breq2d 5160 . . . . . . . . 9 (𝜑 → (0 < (0↑𝑁) ↔ 0 < 0))
1815, 17mtbiri 327 . . . . . . . 8 (𝜑 → ¬ 0 < (0↑𝑁))
1918adantr 480 . . . . . . 7 ((𝜑 ∧ 0 = 𝐴) → ¬ 0 < (0↑𝑁))
20 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ 0 = 𝐴) → 0 = 𝐴)
2120eqcomd 2741 . . . . . . . . 9 ((𝜑 ∧ 0 = 𝐴) → 𝐴 = 0)
2221oveq1d 7446 . . . . . . . 8 ((𝜑 ∧ 0 = 𝐴) → (𝐴𝑁) = (0↑𝑁))
2322breq2d 5160 . . . . . . 7 ((𝜑 ∧ 0 = 𝐴) → (0 < (𝐴𝑁) ↔ 0 < (0↑𝑁)))
2419, 23mtbird 325 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → ¬ 0 < (𝐴𝑁))
2524ex 412 . . . . 5 (𝜑 → (0 = 𝐴 → ¬ 0 < (𝐴𝑁)))
261renegcld 11688 . . . . . . . . . 10 (𝜑 → -𝐴 ∈ ℝ)
2726adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < -𝐴) → -𝐴 ∈ ℝ)
284adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < -𝐴) → 𝑁 ∈ ℤ)
29 simpr 484 . . . . . . . . 9 ((𝜑 ∧ 0 < -𝐴) → 0 < -𝐴)
30 expgt0 14133 . . . . . . . . 9 ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < -𝐴) → 0 < (-𝐴𝑁))
3127, 28, 29, 30syl3anc 1370 . . . . . . . 8 ((𝜑 ∧ 0 < -𝐴) → 0 < (-𝐴𝑁))
3231ex 412 . . . . . . 7 (𝜑 → (0 < -𝐴 → 0 < (-𝐴𝑁)))
331recnd 11287 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
34 expgt0b.1 . . . . . . . . . 10 (𝜑 → ¬ 2 ∥ 𝑁)
35 oexpneg 16379 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (-𝐴𝑁) = -(𝐴𝑁))
3633, 3, 34, 35syl3anc 1370 . . . . . . . . 9 (𝜑 → (-𝐴𝑁) = -(𝐴𝑁))
3736breq2d 5160 . . . . . . . 8 (𝜑 → (0 < (-𝐴𝑁) ↔ 0 < -(𝐴𝑁)))
3837biimpd 229 . . . . . . 7 (𝜑 → (0 < (-𝐴𝑁) → 0 < -(𝐴𝑁)))
393nnnn0d 12585 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
401, 39reexpcld 14200 . . . . . . . . . 10 (𝜑 → (𝐴𝑁) ∈ ℝ)
4140renegcld 11688 . . . . . . . . 9 (𝜑 → -(𝐴𝑁) ∈ ℝ)
4210, 41lttrid 11397 . . . . . . . 8 (𝜑 → (0 < -(𝐴𝑁) ↔ ¬ (0 = -(𝐴𝑁) ∨ -(𝐴𝑁) < 0)))
43 pm2.46 882 . . . . . . . 8 (¬ (0 = -(𝐴𝑁) ∨ -(𝐴𝑁) < 0) → ¬ -(𝐴𝑁) < 0)
4442, 43biimtrdi 253 . . . . . . 7 (𝜑 → (0 < -(𝐴𝑁) → ¬ -(𝐴𝑁) < 0))
4532, 38, 443syld 60 . . . . . 6 (𝜑 → (0 < -𝐴 → ¬ -(𝐴𝑁) < 0))
461lt0neg1d 11830 . . . . . 6 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
4740lt0neg2d 11831 . . . . . . 7 (𝜑 → (0 < (𝐴𝑁) ↔ -(𝐴𝑁) < 0))
4847notbid 318 . . . . . 6 (𝜑 → (¬ 0 < (𝐴𝑁) ↔ ¬ -(𝐴𝑁) < 0))
4945, 46, 483imtr4d 294 . . . . 5 (𝜑 → (𝐴 < 0 → ¬ 0 < (𝐴𝑁)))
5025, 49jaod 859 . . . 4 (𝜑 → ((0 = 𝐴𝐴 < 0) → ¬ 0 < (𝐴𝑁)))
5113, 50syl5 34 . . 3 (𝜑 → (¬ ¬ (0 = 𝐴𝐴 < 0) → ¬ 0 < (𝐴𝑁)))
5212, 51sylbid 240 . 2 (𝜑 → (¬ 0 < 𝐴 → ¬ 0 < (𝐴𝑁)))
539, 52impcon4bid 227 1 (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153   < clt 11293  -cneg 11491  cn 12264  2c2 12319  cz 12611  cexp 14099  cdvds 16287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-dvds 16288
This theorem is referenced by:  2sqr3minply  33753
  Copyright terms: Public domain W3C validator