Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgt0b Structured version   Visualization version   GIF version

Theorem expgt0b 32818
Description: A real number 𝐴 raised to an odd integer power is positive iff it is positive. (Contributed by SN, 4-Mar-2023.) Use the more standard ¬ 2 ∥ 𝑁 (Revised by Thierry Arnoux, 14-Jun-2025.)
Hypotheses
Ref Expression
expgt0b.n (𝜑𝐴 ∈ ℝ)
expgt0b.m (𝜑𝑁 ∈ ℕ)
expgt0b.1 (𝜑 → ¬ 2 ∥ 𝑁)
Assertion
Ref Expression
expgt0b (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴𝑁)))

Proof of Theorem expgt0b
StepHypRef Expression
1 expgt0b.n . . . . 5 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
3 expgt0b.m . . . . . 6 (𝜑𝑁 ∈ ℕ)
43nnzd 12640 . . . . 5 (𝜑𝑁 ∈ ℤ)
54adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝑁 ∈ ℤ)
6 simpr 484 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴)
7 expgt0 14136 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴𝑁))
82, 5, 6, 7syl3anc 1373 . . 3 ((𝜑 ∧ 0 < 𝐴) → 0 < (𝐴𝑁))
98ex 412 . 2 (𝜑 → (0 < 𝐴 → 0 < (𝐴𝑁)))
10 0red 11264 . . . . 5 (𝜑 → 0 ∈ ℝ)
1110, 1lttrid 11399 . . . 4 (𝜑 → (0 < 𝐴 ↔ ¬ (0 = 𝐴𝐴 < 0)))
1211notbid 318 . . 3 (𝜑 → (¬ 0 < 𝐴 ↔ ¬ ¬ (0 = 𝐴𝐴 < 0)))
13 notnotr 130 . . . 4 (¬ ¬ (0 = 𝐴𝐴 < 0) → (0 = 𝐴𝐴 < 0))
14 0re 11263 . . . . . . . . . 10 0 ∈ ℝ
1514ltnri 11370 . . . . . . . . 9 ¬ 0 < 0
1630expd 14179 . . . . . . . . . 10 (𝜑 → (0↑𝑁) = 0)
1716breq2d 5155 . . . . . . . . 9 (𝜑 → (0 < (0↑𝑁) ↔ 0 < 0))
1815, 17mtbiri 327 . . . . . . . 8 (𝜑 → ¬ 0 < (0↑𝑁))
1918adantr 480 . . . . . . 7 ((𝜑 ∧ 0 = 𝐴) → ¬ 0 < (0↑𝑁))
20 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ 0 = 𝐴) → 0 = 𝐴)
2120eqcomd 2743 . . . . . . . . 9 ((𝜑 ∧ 0 = 𝐴) → 𝐴 = 0)
2221oveq1d 7446 . . . . . . . 8 ((𝜑 ∧ 0 = 𝐴) → (𝐴𝑁) = (0↑𝑁))
2322breq2d 5155 . . . . . . 7 ((𝜑 ∧ 0 = 𝐴) → (0 < (𝐴𝑁) ↔ 0 < (0↑𝑁)))
2419, 23mtbird 325 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → ¬ 0 < (𝐴𝑁))
2524ex 412 . . . . 5 (𝜑 → (0 = 𝐴 → ¬ 0 < (𝐴𝑁)))
261renegcld 11690 . . . . . . . . . 10 (𝜑 → -𝐴 ∈ ℝ)
2726adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < -𝐴) → -𝐴 ∈ ℝ)
284adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < -𝐴) → 𝑁 ∈ ℤ)
29 simpr 484 . . . . . . . . 9 ((𝜑 ∧ 0 < -𝐴) → 0 < -𝐴)
30 expgt0 14136 . . . . . . . . 9 ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < -𝐴) → 0 < (-𝐴𝑁))
3127, 28, 29, 30syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ 0 < -𝐴) → 0 < (-𝐴𝑁))
3231ex 412 . . . . . . 7 (𝜑 → (0 < -𝐴 → 0 < (-𝐴𝑁)))
331recnd 11289 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
34 expgt0b.1 . . . . . . . . . 10 (𝜑 → ¬ 2 ∥ 𝑁)
35 oexpneg 16382 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (-𝐴𝑁) = -(𝐴𝑁))
3633, 3, 34, 35syl3anc 1373 . . . . . . . . 9 (𝜑 → (-𝐴𝑁) = -(𝐴𝑁))
3736breq2d 5155 . . . . . . . 8 (𝜑 → (0 < (-𝐴𝑁) ↔ 0 < -(𝐴𝑁)))
3837biimpd 229 . . . . . . 7 (𝜑 → (0 < (-𝐴𝑁) → 0 < -(𝐴𝑁)))
393nnnn0d 12587 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
401, 39reexpcld 14203 . . . . . . . . . 10 (𝜑 → (𝐴𝑁) ∈ ℝ)
4140renegcld 11690 . . . . . . . . 9 (𝜑 → -(𝐴𝑁) ∈ ℝ)
4210, 41lttrid 11399 . . . . . . . 8 (𝜑 → (0 < -(𝐴𝑁) ↔ ¬ (0 = -(𝐴𝑁) ∨ -(𝐴𝑁) < 0)))
43 pm2.46 883 . . . . . . . 8 (¬ (0 = -(𝐴𝑁) ∨ -(𝐴𝑁) < 0) → ¬ -(𝐴𝑁) < 0)
4442, 43biimtrdi 253 . . . . . . 7 (𝜑 → (0 < -(𝐴𝑁) → ¬ -(𝐴𝑁) < 0))
4532, 38, 443syld 60 . . . . . 6 (𝜑 → (0 < -𝐴 → ¬ -(𝐴𝑁) < 0))
461lt0neg1d 11832 . . . . . 6 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
4740lt0neg2d 11833 . . . . . . 7 (𝜑 → (0 < (𝐴𝑁) ↔ -(𝐴𝑁) < 0))
4847notbid 318 . . . . . 6 (𝜑 → (¬ 0 < (𝐴𝑁) ↔ ¬ -(𝐴𝑁) < 0))
4945, 46, 483imtr4d 294 . . . . 5 (𝜑 → (𝐴 < 0 → ¬ 0 < (𝐴𝑁)))
5025, 49jaod 860 . . . 4 (𝜑 → ((0 = 𝐴𝐴 < 0) → ¬ 0 < (𝐴𝑁)))
5113, 50syl5 34 . . 3 (𝜑 → (¬ ¬ (0 = 𝐴𝐴 < 0) → ¬ 0 < (𝐴𝑁)))
5212, 51sylbid 240 . 2 (𝜑 → (¬ 0 < 𝐴 → ¬ 0 < (𝐴𝑁)))
539, 52impcon4bid 227 1 (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   < clt 11295  -cneg 11493  cn 12266  2c2 12321  cz 12613  cexp 14102  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-dvds 16291
This theorem is referenced by:  2sqr3minply  33791
  Copyright terms: Public domain W3C validator