![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem11 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 35127. (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem.q | ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) |
cvmliftlem.k | ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) |
Ref | Expression |
---|---|
cvmliftlem11 | ⊢ (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem.1 | . . . . 5 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
2 | cvmliftlem.b | . . . . 5 ⊢ 𝐵 = ∪ 𝐶 | |
3 | cvmliftlem.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
4 | cvmliftlem.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
5 | cvmliftlem.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
6 | cvmliftlem.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
7 | cvmliftlem.e | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | |
8 | cvmliftlem.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
9 | cvmliftlem.t | . . . . 5 ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) | |
10 | cvmliftlem.a | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) | |
11 | cvmliftlem.l | . . . . 5 ⊢ 𝐿 = (topGen‘ran (,)) | |
12 | cvmliftlem.q | . . . . 5 ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) | |
13 | cvmliftlem.k | . . . . 5 ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) | |
14 | biid 260 | . . . . 5 ⊢ (((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ (∪ 𝑘 ∈ (1...𝑛)(𝑄‘𝑘) ∈ ((𝐿 ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ ∪ 𝑘 ∈ (1...𝑛)(𝑄‘𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))) ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ (∪ 𝑘 ∈ (1...𝑛)(𝑄‘𝑘) ∈ ((𝐿 ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ ∪ 𝑘 ∈ (1...𝑛)(𝑄‘𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cvmliftlem10 35122 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ ((𝐿 ↾t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))) |
16 | 15 | simpld 493 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ((𝐿 ↾t (0[,](𝑁 / 𝑁))) Cn 𝐶)) |
17 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐿 = (topGen‘ran (,))) |
18 | 8 | nncnd 12280 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
19 | 8 | nnne0d 12314 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ≠ 0) |
20 | 18, 19 | dividd 12039 | . . . . . . 7 ⊢ (𝜑 → (𝑁 / 𝑁) = 1) |
21 | 20 | oveq2d 7440 | . . . . . 6 ⊢ (𝜑 → (0[,](𝑁 / 𝑁)) = (0[,]1)) |
22 | 17, 21 | oveq12d 7442 | . . . . 5 ⊢ (𝜑 → (𝐿 ↾t (0[,](𝑁 / 𝑁))) = ((topGen‘ran (,)) ↾t (0[,]1))) |
23 | dfii2 24893 | . . . . 5 ⊢ II = ((topGen‘ran (,)) ↾t (0[,]1)) | |
24 | 22, 23 | eqtr4di 2784 | . . . 4 ⊢ (𝜑 → (𝐿 ↾t (0[,](𝑁 / 𝑁))) = II) |
25 | 24 | oveq1d 7439 | . . 3 ⊢ (𝜑 → ((𝐿 ↾t (0[,](𝑁 / 𝑁))) Cn 𝐶) = (II Cn 𝐶)) |
26 | 16, 25 | eleqtrd 2828 | . 2 ⊢ (𝜑 → 𝐾 ∈ (II Cn 𝐶)) |
27 | 15 | simprd 494 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))) |
28 | 21 | reseq2d 5989 | . . 3 ⊢ (𝜑 → (𝐺 ↾ (0[,](𝑁 / 𝑁))) = (𝐺 ↾ (0[,]1))) |
29 | iiuni 24892 | . . . . 5 ⊢ (0[,]1) = ∪ II | |
30 | 29, 3 | cnf 23241 | . . . 4 ⊢ (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋) |
31 | ffn 6728 | . . . 4 ⊢ (𝐺:(0[,]1)⟶𝑋 → 𝐺 Fn (0[,]1)) | |
32 | fnresdm 6680 | . . . 4 ⊢ (𝐺 Fn (0[,]1) → (𝐺 ↾ (0[,]1)) = 𝐺) | |
33 | 5, 30, 31, 32 | 4syl 19 | . . 3 ⊢ (𝜑 → (𝐺 ↾ (0[,]1)) = 𝐺) |
34 | 27, 28, 33 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐾) = 𝐺) |
35 | 26, 34 | jca 510 | 1 ⊢ (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3419 Vcvv 3462 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4325 𝒫 cpw 4607 {csn 4633 〈cop 4639 ∪ cuni 4913 ∪ ciun 5001 ↦ cmpt 5236 I cid 5579 × cxp 5680 ◡ccnv 5681 ran crn 5683 ↾ cres 5684 “ cima 5685 ∘ ccom 5686 Fn wfn 6549 ⟶wf 6550 ‘cfv 6554 ℩crio 7379 (class class class)co 7424 ∈ cmpo 7426 1st c1st 8001 2nd c2nd 8002 0cc0 11158 1c1 11159 + caddc 11161 − cmin 11494 / cdiv 11921 ℕcn 12264 (,)cioo 13378 [,]cicc 13381 ...cfz 13538 seqcseq 14021 ↾t crest 17435 topGenctg 17452 Cn ccn 23219 Homeochmeo 23748 IIcii 24886 CovMap ccvm 35083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fi 9454 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ioo 13382 df-icc 13385 df-fz 13539 df-seq 14022 df-exp 14082 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-rest 17437 df-topgen 17458 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-top 22887 df-topon 22904 df-bases 22940 df-cld 23014 df-cn 23222 df-hmeo 23750 df-ii 24888 df-cvm 35084 |
This theorem is referenced by: cvmliftlem13 35124 cvmliftlem14 35125 |
Copyright terms: Public domain | W3C validator |