![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem11 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 34585. (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | β’ π = (π β π½ β¦ {π β (π« πΆ β {β }) β£ (βͺ π = (β‘πΉ β π) β§ βπ’ β π (βπ£ β (π β {π’})(π’ β© π£) = β β§ (πΉ βΎ π’) β ((πΆ βΎt π’)Homeo(π½ βΎt π))))}) |
cvmliftlem.b | β’ π΅ = βͺ πΆ |
cvmliftlem.x | β’ π = βͺ π½ |
cvmliftlem.f | β’ (π β πΉ β (πΆ CovMap π½)) |
cvmliftlem.g | β’ (π β πΊ β (II Cn π½)) |
cvmliftlem.p | β’ (π β π β π΅) |
cvmliftlem.e | β’ (π β (πΉβπ) = (πΊβ0)) |
cvmliftlem.n | β’ (π β π β β) |
cvmliftlem.t | β’ (π β π:(1...π)βΆβͺ π β π½ ({π} Γ (πβπ))) |
cvmliftlem.a | β’ (π β βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ))) |
cvmliftlem.l | β’ πΏ = (topGenβran (,)) |
cvmliftlem.q | β’ π = seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©})) |
cvmliftlem.k | β’ πΎ = βͺ π β (1...π)(πβπ) |
Ref | Expression |
---|---|
cvmliftlem11 | β’ (π β (πΎ β (II Cn πΆ) β§ (πΉ β πΎ) = πΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem.1 | . . . . 5 β’ π = (π β π½ β¦ {π β (π« πΆ β {β }) β£ (βͺ π = (β‘πΉ β π) β§ βπ’ β π (βπ£ β (π β {π’})(π’ β© π£) = β β§ (πΉ βΎ π’) β ((πΆ βΎt π’)Homeo(π½ βΎt π))))}) | |
2 | cvmliftlem.b | . . . . 5 β’ π΅ = βͺ πΆ | |
3 | cvmliftlem.x | . . . . 5 β’ π = βͺ π½ | |
4 | cvmliftlem.f | . . . . 5 β’ (π β πΉ β (πΆ CovMap π½)) | |
5 | cvmliftlem.g | . . . . 5 β’ (π β πΊ β (II Cn π½)) | |
6 | cvmliftlem.p | . . . . 5 β’ (π β π β π΅) | |
7 | cvmliftlem.e | . . . . 5 β’ (π β (πΉβπ) = (πΊβ0)) | |
8 | cvmliftlem.n | . . . . 5 β’ (π β π β β) | |
9 | cvmliftlem.t | . . . . 5 β’ (π β π:(1...π)βΆβͺ π β π½ ({π} Γ (πβπ))) | |
10 | cvmliftlem.a | . . . . 5 β’ (π β βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ))) | |
11 | cvmliftlem.l | . . . . 5 β’ πΏ = (topGenβran (,)) | |
12 | cvmliftlem.q | . . . . 5 β’ π = seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©})) | |
13 | cvmliftlem.k | . . . . 5 β’ πΎ = βͺ π β (1...π)(πβπ) | |
14 | biid 260 | . . . . 5 β’ (((π β β β§ (π + 1) β (1...π)) β§ (βͺ π β (1...π)(πβπ) β ((πΏ βΎt (0[,](π / π))) Cn πΆ) β§ (πΉ β βͺ π β (1...π)(πβπ)) = (πΊ βΎ (0[,](π / π))))) β ((π β β β§ (π + 1) β (1...π)) β§ (βͺ π β (1...π)(πβπ) β ((πΏ βΎt (0[,](π / π))) Cn πΆ) β§ (πΉ β βͺ π β (1...π)(πβπ)) = (πΊ βΎ (0[,](π / π)))))) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cvmliftlem10 34580 | . . . 4 β’ (π β (πΎ β ((πΏ βΎt (0[,](π / π))) Cn πΆ) β§ (πΉ β πΎ) = (πΊ βΎ (0[,](π / π))))) |
16 | 15 | simpld 494 | . . 3 β’ (π β πΎ β ((πΏ βΎt (0[,](π / π))) Cn πΆ)) |
17 | 11 | a1i 11 | . . . . . 6 β’ (π β πΏ = (topGenβran (,))) |
18 | 8 | nncnd 12233 | . . . . . . . 8 β’ (π β π β β) |
19 | 8 | nnne0d 12267 | . . . . . . . 8 β’ (π β π β 0) |
20 | 18, 19 | dividd 11993 | . . . . . . 7 β’ (π β (π / π) = 1) |
21 | 20 | oveq2d 7428 | . . . . . 6 β’ (π β (0[,](π / π)) = (0[,]1)) |
22 | 17, 21 | oveq12d 7430 | . . . . 5 β’ (π β (πΏ βΎt (0[,](π / π))) = ((topGenβran (,)) βΎt (0[,]1))) |
23 | dfii2 24623 | . . . . 5 β’ II = ((topGenβran (,)) βΎt (0[,]1)) | |
24 | 22, 23 | eqtr4di 2789 | . . . 4 β’ (π β (πΏ βΎt (0[,](π / π))) = II) |
25 | 24 | oveq1d 7427 | . . 3 β’ (π β ((πΏ βΎt (0[,](π / π))) Cn πΆ) = (II Cn πΆ)) |
26 | 16, 25 | eleqtrd 2834 | . 2 β’ (π β πΎ β (II Cn πΆ)) |
27 | 15 | simprd 495 | . . 3 β’ (π β (πΉ β πΎ) = (πΊ βΎ (0[,](π / π)))) |
28 | 21 | reseq2d 5982 | . . 3 β’ (π β (πΊ βΎ (0[,](π / π))) = (πΊ βΎ (0[,]1))) |
29 | iiuni 24622 | . . . . 5 β’ (0[,]1) = βͺ II | |
30 | 29, 3 | cnf 22971 | . . . 4 β’ (πΊ β (II Cn π½) β πΊ:(0[,]1)βΆπ) |
31 | ffn 6718 | . . . 4 β’ (πΊ:(0[,]1)βΆπ β πΊ Fn (0[,]1)) | |
32 | fnresdm 6670 | . . . 4 β’ (πΊ Fn (0[,]1) β (πΊ βΎ (0[,]1)) = πΊ) | |
33 | 5, 30, 31, 32 | 4syl 19 | . . 3 β’ (π β (πΊ βΎ (0[,]1)) = πΊ) |
34 | 27, 28, 33 | 3eqtrd 2775 | . 2 β’ (π β (πΉ β πΎ) = πΊ) |
35 | 26, 34 | jca 511 | 1 β’ (π β (πΎ β (II Cn πΆ) β§ (πΉ β πΎ) = πΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 {crab 3431 Vcvv 3473 β cdif 3946 βͺ cun 3947 β© cin 3948 β wss 3949 β c0 4323 π« cpw 4603 {csn 4629 β¨cop 4635 βͺ cuni 4909 βͺ ciun 4998 β¦ cmpt 5232 I cid 5574 Γ cxp 5675 β‘ccnv 5676 ran crn 5678 βΎ cres 5679 β cima 5680 β ccom 5681 Fn wfn 6539 βΆwf 6540 βcfv 6544 β©crio 7367 (class class class)co 7412 β cmpo 7414 1st c1st 7976 2nd c2nd 7977 0cc0 11113 1c1 11114 + caddc 11116 β cmin 11449 / cdiv 11876 βcn 12217 (,)cioo 13329 [,]cicc 13332 ...cfz 13489 seqcseq 13971 βΎt crest 17371 topGenctg 17388 Cn ccn 22949 Homeochmeo 23478 IIcii 24616 CovMap ccvm 34541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fi 9409 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-icc 13336 df-fz 13490 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-rest 17373 df-topgen 17394 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-top 22617 df-topon 22634 df-bases 22670 df-cld 22744 df-cn 22952 df-hmeo 23480 df-ii 24618 df-cvm 34542 |
This theorem is referenced by: cvmliftlem13 34582 cvmliftlem14 34583 |
Copyright terms: Public domain | W3C validator |