Proof of Theorem fzo0pmtrlast
Step | Hyp | Ref
| Expression |
1 | | fzo0pmtrlast.j |
. . . . . 6
⊢ 𝐽 = (0..^𝑁) |
2 | 1 | ovexi 7453 |
. . . . 5
⊢ 𝐽 ∈ V |
3 | 2 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → 𝐽 ∈ V) |
4 | 3 | resiexd 7228 |
. . 3
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → ( I ↾ 𝐽) ∈ V) |
5 | | simpr 483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → 𝐼 = (𝑁 − 1)) |
6 | | fzo0pmtrlast.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ 𝐽) |
7 | 6 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → 𝐼 ∈ 𝐽) |
8 | 5, 7 | eqeltrrd 2826 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → (𝑁 − 1) ∈ 𝐽) |
9 | | fvresi 7182 |
. . . . . 6
⊢ ((𝑁 − 1) ∈ 𝐽 → (( I ↾ 𝐽)‘(𝑁 − 1)) = (𝑁 − 1)) |
10 | 8, 9 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽)‘(𝑁 − 1)) = (𝑁 − 1)) |
11 | 10, 5 | eqtr4d 2768 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼) |
12 | | f1oi 6876 |
. . . 4
⊢ ( I
↾ 𝐽):𝐽–1-1-onto→𝐽 |
13 | 11, 12 | jctil 518 |
. . 3
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽):𝐽–1-1-onto→𝐽 ∧ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼)) |
14 | | f1oeq1 6826 |
. . . 4
⊢ (𝑠 = ( I ↾ 𝐽) → (𝑠:𝐽–1-1-onto→𝐽 ↔ ( I ↾ 𝐽):𝐽–1-1-onto→𝐽)) |
15 | | fveq1 6895 |
. . . . 5
⊢ (𝑠 = ( I ↾ 𝐽) → (𝑠‘(𝑁 − 1)) = (( I ↾ 𝐽)‘(𝑁 − 1))) |
16 | 15 | eqeq1d 2727 |
. . . 4
⊢ (𝑠 = ( I ↾ 𝐽) → ((𝑠‘(𝑁 − 1)) = 𝐼 ↔ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼)) |
17 | 14, 16 | anbi12d 630 |
. . 3
⊢ (𝑠 = ( I ↾ 𝐽) → ((𝑠:𝐽–1-1-onto→𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼) ↔ (( I ↾ 𝐽):𝐽–1-1-onto→𝐽 ∧ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼))) |
18 | 4, 13, 17 | spcedv 3582 |
. 2
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → ∃𝑠(𝑠:𝐽–1-1-onto→𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼)) |
19 | | fvexd 6911 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ V) |
20 | 2 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → 𝐽 ∈ V) |
21 | 6 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → 𝐼 ∈ 𝐽) |
22 | 6, 1 | eleqtrdi 2835 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ (0..^𝑁)) |
23 | | elfzo0 13708 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) |
24 | 23 | simp2bi 1143 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (0..^𝑁) → 𝑁 ∈ ℕ) |
25 | | fzo0end 13759 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁)) |
26 | 22, 24, 25 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 − 1) ∈ (0..^𝑁)) |
27 | 26, 1 | eleqtrrdi 2836 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − 1) ∈ 𝐽) |
28 | 27 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → (𝑁 − 1) ∈ 𝐽) |
29 | 21, 28 | prssd 4827 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ⊆ 𝐽) |
30 | | simpr 483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → 𝐼 ≠ (𝑁 − 1)) |
31 | | enpr2 10027 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝐽 ∧ (𝑁 − 1) ∈ 𝐽 ∧ 𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ≈
2o) |
32 | 21, 28, 30, 31 | syl3anc 1368 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ≈
2o) |
33 | | eqid 2725 |
. . . . . . 7
⊢
(pmTrsp‘𝐽) =
(pmTrsp‘𝐽) |
34 | | eqid 2725 |
. . . . . . 7
⊢ ran
(pmTrsp‘𝐽) = ran
(pmTrsp‘𝐽) |
35 | 33, 34 | pmtrrn 19424 |
. . . . . 6
⊢ ((𝐽 ∈ V ∧ {𝐼, (𝑁 − 1)} ⊆ 𝐽 ∧ {𝐼, (𝑁 − 1)} ≈ 2o) →
((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽)) |
36 | 20, 29, 32, 35 | syl3anc 1368 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽)) |
37 | 33, 34 | pmtrff1o 19430 |
. . . . 5
⊢
(((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽–1-1-onto→𝐽) |
38 | 36, 37 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽–1-1-onto→𝐽) |
39 | 33 | pmtrprfv2 32901 |
. . . . 5
⊢ ((𝐽 ∈ V ∧ (𝐼 ∈ 𝐽 ∧ (𝑁 − 1) ∈ 𝐽 ∧ 𝐼 ≠ (𝑁 − 1))) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼) |
40 | 20, 21, 28, 30, 39 | syl13anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼) |
41 | 38, 40 | jca 510 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽–1-1-onto→𝐽 ∧ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)) |
42 | | f1oeq1 6826 |
. . . 4
⊢ (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → (𝑠:𝐽–1-1-onto→𝐽 ↔ ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽–1-1-onto→𝐽)) |
43 | | fveq1 6895 |
. . . . 5
⊢ (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → (𝑠‘(𝑁 − 1)) = (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1))) |
44 | 43 | eqeq1d 2727 |
. . . 4
⊢ (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → ((𝑠‘(𝑁 − 1)) = 𝐼 ↔ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)) |
45 | 42, 44 | anbi12d 630 |
. . 3
⊢ (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → ((𝑠:𝐽–1-1-onto→𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼) ↔ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽–1-1-onto→𝐽 ∧ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼))) |
46 | 19, 41, 45 | spcedv 3582 |
. 2
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → ∃𝑠(𝑠:𝐽–1-1-onto→𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼)) |
47 | 18, 46 | pm2.61dane 3018 |
1
⊢ (𝜑 → ∃𝑠(𝑠:𝐽–1-1-onto→𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼)) |