Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzo0pmtrlast Structured version   Visualization version   GIF version

Theorem fzo0pmtrlast 33061
Description: Reorder a half-open integer range based at 0, so that the given index 𝐼 is at the end. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
fzo0pmtrlast.j 𝐽 = (0..^𝑁)
fzo0pmtrlast.i (𝜑𝐼𝐽)
Assertion
Ref Expression
fzo0pmtrlast (𝜑 → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼))
Distinct variable groups:   𝐼,𝑠   𝐽,𝑠   𝑁,𝑠
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem fzo0pmtrlast
StepHypRef Expression
1 fzo0pmtrlast.j . . . . . 6 𝐽 = (0..^𝑁)
21ovexi 7380 . . . . 5 𝐽 ∈ V
32a1i 11 . . . 4 ((𝜑𝐼 = (𝑁 − 1)) → 𝐽 ∈ V)
43resiexd 7150 . . 3 ((𝜑𝐼 = (𝑁 − 1)) → ( I ↾ 𝐽) ∈ V)
5 simpr 484 . . . . . . 7 ((𝜑𝐼 = (𝑁 − 1)) → 𝐼 = (𝑁 − 1))
6 fzo0pmtrlast.i . . . . . . . 8 (𝜑𝐼𝐽)
76adantr 480 . . . . . . 7 ((𝜑𝐼 = (𝑁 − 1)) → 𝐼𝐽)
85, 7eqeltrrd 2832 . . . . . 6 ((𝜑𝐼 = (𝑁 − 1)) → (𝑁 − 1) ∈ 𝐽)
9 fvresi 7107 . . . . . 6 ((𝑁 − 1) ∈ 𝐽 → (( I ↾ 𝐽)‘(𝑁 − 1)) = (𝑁 − 1))
108, 9syl 17 . . . . 5 ((𝜑𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽)‘(𝑁 − 1)) = (𝑁 − 1))
1110, 5eqtr4d 2769 . . . 4 ((𝜑𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼)
12 f1oi 6801 . . . 4 ( I ↾ 𝐽):𝐽1-1-onto𝐽
1311, 12jctil 519 . . 3 ((𝜑𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽):𝐽1-1-onto𝐽 ∧ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼))
14 f1oeq1 6751 . . . 4 (𝑠 = ( I ↾ 𝐽) → (𝑠:𝐽1-1-onto𝐽 ↔ ( I ↾ 𝐽):𝐽1-1-onto𝐽))
15 fveq1 6821 . . . . 5 (𝑠 = ( I ↾ 𝐽) → (𝑠‘(𝑁 − 1)) = (( I ↾ 𝐽)‘(𝑁 − 1)))
1615eqeq1d 2733 . . . 4 (𝑠 = ( I ↾ 𝐽) → ((𝑠‘(𝑁 − 1)) = 𝐼 ↔ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼))
1714, 16anbi12d 632 . . 3 (𝑠 = ( I ↾ 𝐽) → ((𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼) ↔ (( I ↾ 𝐽):𝐽1-1-onto𝐽 ∧ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼)))
184, 13, 17spcedv 3548 . 2 ((𝜑𝐼 = (𝑁 − 1)) → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼))
19 fvexd 6837 . . 3 ((𝜑𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ V)
202a1i 11 . . . . . 6 ((𝜑𝐼 ≠ (𝑁 − 1)) → 𝐽 ∈ V)
216adantr 480 . . . . . . 7 ((𝜑𝐼 ≠ (𝑁 − 1)) → 𝐼𝐽)
226, 1eleqtrdi 2841 . . . . . . . . . 10 (𝜑𝐼 ∈ (0..^𝑁))
23 elfzo0 13600 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
2423simp2bi 1146 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑁) → 𝑁 ∈ ℕ)
25 fzo0end 13658 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁))
2622, 24, 253syl 18 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ (0..^𝑁))
2726, 1eleqtrrdi 2842 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ 𝐽)
2827adantr 480 . . . . . . 7 ((𝜑𝐼 ≠ (𝑁 − 1)) → (𝑁 − 1) ∈ 𝐽)
2921, 28prssd 4771 . . . . . 6 ((𝜑𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ⊆ 𝐽)
30 simpr 484 . . . . . . 7 ((𝜑𝐼 ≠ (𝑁 − 1)) → 𝐼 ≠ (𝑁 − 1))
31 enpr2 9895 . . . . . . 7 ((𝐼𝐽 ∧ (𝑁 − 1) ∈ 𝐽𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ≈ 2o)
3221, 28, 30, 31syl3anc 1373 . . . . . 6 ((𝜑𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ≈ 2o)
33 eqid 2731 . . . . . . 7 (pmTrsp‘𝐽) = (pmTrsp‘𝐽)
34 eqid 2731 . . . . . . 7 ran (pmTrsp‘𝐽) = ran (pmTrsp‘𝐽)
3533, 34pmtrrn 19369 . . . . . 6 ((𝐽 ∈ V ∧ {𝐼, (𝑁 − 1)} ⊆ 𝐽 ∧ {𝐼, (𝑁 − 1)} ≈ 2o) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽))
3620, 29, 32, 35syl3anc 1373 . . . . 5 ((𝜑𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽))
3733, 34pmtrff1o 19375 . . . . 5 (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽)
3836, 37syl 17 . . . 4 ((𝜑𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽)
3933pmtrprfv2 33057 . . . . 5 ((𝐽 ∈ V ∧ (𝐼𝐽 ∧ (𝑁 − 1) ∈ 𝐽𝐼 ≠ (𝑁 − 1))) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)
4020, 21, 28, 30, 39syl13anc 1374 . . . 4 ((𝜑𝐼 ≠ (𝑁 − 1)) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)
4138, 40jca 511 . . 3 ((𝜑𝐼 ≠ (𝑁 − 1)) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽 ∧ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼))
42 f1oeq1 6751 . . . 4 (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → (𝑠:𝐽1-1-onto𝐽 ↔ ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽))
43 fveq1 6821 . . . . 5 (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → (𝑠‘(𝑁 − 1)) = (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)))
4443eqeq1d 2733 . . . 4 (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → ((𝑠‘(𝑁 − 1)) = 𝐼 ↔ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼))
4542, 44anbi12d 632 . . 3 (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → ((𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼) ↔ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽 ∧ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)))
4619, 41, 45spcedv 3548 . 2 ((𝜑𝐼 ≠ (𝑁 − 1)) → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼))
4718, 46pm2.61dane 3015 1 (𝜑 → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  Vcvv 3436  wss 3897  {cpr 4575   class class class wbr 5089   I cid 5508  ran crn 5615  cres 5616  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  2oc2o 8379  cen 8866  0cc0 11006  1c1 11007   < clt 11146  cmin 11344  cn 12125  0cn0 12381  ..^cfzo 13554  pmTrspcpmtr 19353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-pmtr 19354
This theorem is referenced by:  wrdpmtrlast  33062
  Copyright terms: Public domain W3C validator