Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzo0pmtrlast Structured version   Visualization version   GIF version

Theorem fzo0pmtrlast 33085
Description: Reorder a half-open integer range based at 0, so that the given index 𝐼 is at the end. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
fzo0pmtrlast.j 𝐽 = (0..^𝑁)
fzo0pmtrlast.i (𝜑𝐼𝐽)
Assertion
Ref Expression
fzo0pmtrlast (𝜑 → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼))
Distinct variable groups:   𝐼,𝑠   𝐽,𝑠   𝑁,𝑠
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem fzo0pmtrlast
StepHypRef Expression
1 fzo0pmtrlast.j . . . . . 6 𝐽 = (0..^𝑁)
21ovexi 7482 . . . . 5 𝐽 ∈ V
32a1i 11 . . . 4 ((𝜑𝐼 = (𝑁 − 1)) → 𝐽 ∈ V)
43resiexd 7253 . . 3 ((𝜑𝐼 = (𝑁 − 1)) → ( I ↾ 𝐽) ∈ V)
5 simpr 484 . . . . . . 7 ((𝜑𝐼 = (𝑁 − 1)) → 𝐼 = (𝑁 − 1))
6 fzo0pmtrlast.i . . . . . . . 8 (𝜑𝐼𝐽)
76adantr 480 . . . . . . 7 ((𝜑𝐼 = (𝑁 − 1)) → 𝐼𝐽)
85, 7eqeltrrd 2845 . . . . . 6 ((𝜑𝐼 = (𝑁 − 1)) → (𝑁 − 1) ∈ 𝐽)
9 fvresi 7207 . . . . . 6 ((𝑁 − 1) ∈ 𝐽 → (( I ↾ 𝐽)‘(𝑁 − 1)) = (𝑁 − 1))
108, 9syl 17 . . . . 5 ((𝜑𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽)‘(𝑁 − 1)) = (𝑁 − 1))
1110, 5eqtr4d 2783 . . . 4 ((𝜑𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼)
12 f1oi 6900 . . . 4 ( I ↾ 𝐽):𝐽1-1-onto𝐽
1311, 12jctil 519 . . 3 ((𝜑𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽):𝐽1-1-onto𝐽 ∧ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼))
14 f1oeq1 6850 . . . 4 (𝑠 = ( I ↾ 𝐽) → (𝑠:𝐽1-1-onto𝐽 ↔ ( I ↾ 𝐽):𝐽1-1-onto𝐽))
15 fveq1 6919 . . . . 5 (𝑠 = ( I ↾ 𝐽) → (𝑠‘(𝑁 − 1)) = (( I ↾ 𝐽)‘(𝑁 − 1)))
1615eqeq1d 2742 . . . 4 (𝑠 = ( I ↾ 𝐽) → ((𝑠‘(𝑁 − 1)) = 𝐼 ↔ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼))
1714, 16anbi12d 631 . . 3 (𝑠 = ( I ↾ 𝐽) → ((𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼) ↔ (( I ↾ 𝐽):𝐽1-1-onto𝐽 ∧ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼)))
184, 13, 17spcedv 3611 . 2 ((𝜑𝐼 = (𝑁 − 1)) → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼))
19 fvexd 6935 . . 3 ((𝜑𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ V)
202a1i 11 . . . . . 6 ((𝜑𝐼 ≠ (𝑁 − 1)) → 𝐽 ∈ V)
216adantr 480 . . . . . . 7 ((𝜑𝐼 ≠ (𝑁 − 1)) → 𝐼𝐽)
226, 1eleqtrdi 2854 . . . . . . . . . 10 (𝜑𝐼 ∈ (0..^𝑁))
23 elfzo0 13757 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
2423simp2bi 1146 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑁) → 𝑁 ∈ ℕ)
25 fzo0end 13808 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁))
2622, 24, 253syl 18 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ (0..^𝑁))
2726, 1eleqtrrdi 2855 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ 𝐽)
2827adantr 480 . . . . . . 7 ((𝜑𝐼 ≠ (𝑁 − 1)) → (𝑁 − 1) ∈ 𝐽)
2921, 28prssd 4847 . . . . . 6 ((𝜑𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ⊆ 𝐽)
30 simpr 484 . . . . . . 7 ((𝜑𝐼 ≠ (𝑁 − 1)) → 𝐼 ≠ (𝑁 − 1))
31 enpr2 10071 . . . . . . 7 ((𝐼𝐽 ∧ (𝑁 − 1) ∈ 𝐽𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ≈ 2o)
3221, 28, 30, 31syl3anc 1371 . . . . . 6 ((𝜑𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ≈ 2o)
33 eqid 2740 . . . . . . 7 (pmTrsp‘𝐽) = (pmTrsp‘𝐽)
34 eqid 2740 . . . . . . 7 ran (pmTrsp‘𝐽) = ran (pmTrsp‘𝐽)
3533, 34pmtrrn 19499 . . . . . 6 ((𝐽 ∈ V ∧ {𝐼, (𝑁 − 1)} ⊆ 𝐽 ∧ {𝐼, (𝑁 − 1)} ≈ 2o) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽))
3620, 29, 32, 35syl3anc 1371 . . . . 5 ((𝜑𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽))
3733, 34pmtrff1o 19505 . . . . 5 (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽)
3836, 37syl 17 . . . 4 ((𝜑𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽)
3933pmtrprfv2 33081 . . . . 5 ((𝐽 ∈ V ∧ (𝐼𝐽 ∧ (𝑁 − 1) ∈ 𝐽𝐼 ≠ (𝑁 − 1))) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)
4020, 21, 28, 30, 39syl13anc 1372 . . . 4 ((𝜑𝐼 ≠ (𝑁 − 1)) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)
4138, 40jca 511 . . 3 ((𝜑𝐼 ≠ (𝑁 − 1)) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽 ∧ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼))
42 f1oeq1 6850 . . . 4 (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → (𝑠:𝐽1-1-onto𝐽 ↔ ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽))
43 fveq1 6919 . . . . 5 (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → (𝑠‘(𝑁 − 1)) = (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)))
4443eqeq1d 2742 . . . 4 (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → ((𝑠‘(𝑁 − 1)) = 𝐼 ↔ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼))
4542, 44anbi12d 631 . . 3 (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → ((𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼) ↔ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽 ∧ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)))
4619, 41, 45spcedv 3611 . 2 ((𝜑𝐼 ≠ (𝑁 − 1)) → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼))
4718, 46pm2.61dane 3035 1 (𝜑 → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  Vcvv 3488  wss 3976  {cpr 4650   class class class wbr 5166   I cid 5592  ran crn 5701  cres 5702  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  2oc2o 8516  cen 9000  0cc0 11184  1c1 11185   < clt 11324  cmin 11520  cn 12293  0cn0 12553  ..^cfzo 13711  pmTrspcpmtr 19483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-pmtr 19484
This theorem is referenced by:  wrdpmtrlast  33086
  Copyright terms: Public domain W3C validator