Proof of Theorem fzo0pmtrlast
| Step | Hyp | Ref
| Expression |
| 1 | | fzo0pmtrlast.j |
. . . . . 6
⊢ 𝐽 = (0..^𝑁) |
| 2 | 1 | ovexi 7444 |
. . . . 5
⊢ 𝐽 ∈ V |
| 3 | 2 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → 𝐽 ∈ V) |
| 4 | 3 | resiexd 7213 |
. . 3
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → ( I ↾ 𝐽) ∈ V) |
| 5 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → 𝐼 = (𝑁 − 1)) |
| 6 | | fzo0pmtrlast.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ 𝐽) |
| 7 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → 𝐼 ∈ 𝐽) |
| 8 | 5, 7 | eqeltrrd 2836 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → (𝑁 − 1) ∈ 𝐽) |
| 9 | | fvresi 7170 |
. . . . . 6
⊢ ((𝑁 − 1) ∈ 𝐽 → (( I ↾ 𝐽)‘(𝑁 − 1)) = (𝑁 − 1)) |
| 10 | 8, 9 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽)‘(𝑁 − 1)) = (𝑁 − 1)) |
| 11 | 10, 5 | eqtr4d 2774 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼) |
| 12 | | f1oi 6861 |
. . . 4
⊢ ( I
↾ 𝐽):𝐽–1-1-onto→𝐽 |
| 13 | 11, 12 | jctil 519 |
. . 3
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽):𝐽–1-1-onto→𝐽 ∧ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼)) |
| 14 | | f1oeq1 6811 |
. . . 4
⊢ (𝑠 = ( I ↾ 𝐽) → (𝑠:𝐽–1-1-onto→𝐽 ↔ ( I ↾ 𝐽):𝐽–1-1-onto→𝐽)) |
| 15 | | fveq1 6880 |
. . . . 5
⊢ (𝑠 = ( I ↾ 𝐽) → (𝑠‘(𝑁 − 1)) = (( I ↾ 𝐽)‘(𝑁 − 1))) |
| 16 | 15 | eqeq1d 2738 |
. . . 4
⊢ (𝑠 = ( I ↾ 𝐽) → ((𝑠‘(𝑁 − 1)) = 𝐼 ↔ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼)) |
| 17 | 14, 16 | anbi12d 632 |
. . 3
⊢ (𝑠 = ( I ↾ 𝐽) → ((𝑠:𝐽–1-1-onto→𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼) ↔ (( I ↾ 𝐽):𝐽–1-1-onto→𝐽 ∧ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼))) |
| 18 | 4, 13, 17 | spcedv 3582 |
. 2
⊢ ((𝜑 ∧ 𝐼 = (𝑁 − 1)) → ∃𝑠(𝑠:𝐽–1-1-onto→𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼)) |
| 19 | | fvexd 6896 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ V) |
| 20 | 2 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → 𝐽 ∈ V) |
| 21 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → 𝐼 ∈ 𝐽) |
| 22 | 6, 1 | eleqtrdi 2845 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ (0..^𝑁)) |
| 23 | | elfzo0 13722 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) |
| 24 | 23 | simp2bi 1146 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (0..^𝑁) → 𝑁 ∈ ℕ) |
| 25 | | fzo0end 13779 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁)) |
| 26 | 22, 24, 25 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 − 1) ∈ (0..^𝑁)) |
| 27 | 26, 1 | eleqtrrdi 2846 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − 1) ∈ 𝐽) |
| 28 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → (𝑁 − 1) ∈ 𝐽) |
| 29 | 21, 28 | prssd 4803 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ⊆ 𝐽) |
| 30 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → 𝐼 ≠ (𝑁 − 1)) |
| 31 | | enpr2 10021 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝐽 ∧ (𝑁 − 1) ∈ 𝐽 ∧ 𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ≈
2o) |
| 32 | 21, 28, 30, 31 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ≈
2o) |
| 33 | | eqid 2736 |
. . . . . . 7
⊢
(pmTrsp‘𝐽) =
(pmTrsp‘𝐽) |
| 34 | | eqid 2736 |
. . . . . . 7
⊢ ran
(pmTrsp‘𝐽) = ran
(pmTrsp‘𝐽) |
| 35 | 33, 34 | pmtrrn 19443 |
. . . . . 6
⊢ ((𝐽 ∈ V ∧ {𝐼, (𝑁 − 1)} ⊆ 𝐽 ∧ {𝐼, (𝑁 − 1)} ≈ 2o) →
((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽)) |
| 36 | 20, 29, 32, 35 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽)) |
| 37 | 33, 34 | pmtrff1o 19449 |
. . . . 5
⊢
(((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽–1-1-onto→𝐽) |
| 38 | 36, 37 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽–1-1-onto→𝐽) |
| 39 | 33 | pmtrprfv2 33104 |
. . . . 5
⊢ ((𝐽 ∈ V ∧ (𝐼 ∈ 𝐽 ∧ (𝑁 − 1) ∈ 𝐽 ∧ 𝐼 ≠ (𝑁 − 1))) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼) |
| 40 | 20, 21, 28, 30, 39 | syl13anc 1374 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼) |
| 41 | 38, 40 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽–1-1-onto→𝐽 ∧ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)) |
| 42 | | f1oeq1 6811 |
. . . 4
⊢ (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → (𝑠:𝐽–1-1-onto→𝐽 ↔ ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽–1-1-onto→𝐽)) |
| 43 | | fveq1 6880 |
. . . . 5
⊢ (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → (𝑠‘(𝑁 − 1)) = (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1))) |
| 44 | 43 | eqeq1d 2738 |
. . . 4
⊢ (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → ((𝑠‘(𝑁 − 1)) = 𝐼 ↔ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)) |
| 45 | 42, 44 | anbi12d 632 |
. . 3
⊢ (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → ((𝑠:𝐽–1-1-onto→𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼) ↔ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽–1-1-onto→𝐽 ∧ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼))) |
| 46 | 19, 41, 45 | spcedv 3582 |
. 2
⊢ ((𝜑 ∧ 𝐼 ≠ (𝑁 − 1)) → ∃𝑠(𝑠:𝐽–1-1-onto→𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼)) |
| 47 | 18, 46 | pm2.61dane 3020 |
1
⊢ (𝜑 → ∃𝑠(𝑠:𝐽–1-1-onto→𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼)) |