Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzo0pmtrlast Structured version   Visualization version   GIF version

Theorem fzo0pmtrlast 33095
Description: Reorder a half-open integer range based at 0, so that the given index 𝐼 is at the end. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
fzo0pmtrlast.j 𝐽 = (0..^𝑁)
fzo0pmtrlast.i (𝜑𝐼𝐽)
Assertion
Ref Expression
fzo0pmtrlast (𝜑 → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼))
Distinct variable groups:   𝐼,𝑠   𝐽,𝑠   𝑁,𝑠
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem fzo0pmtrlast
StepHypRef Expression
1 fzo0pmtrlast.j . . . . . 6 𝐽 = (0..^𝑁)
21ovexi 7465 . . . . 5 𝐽 ∈ V
32a1i 11 . . . 4 ((𝜑𝐼 = (𝑁 − 1)) → 𝐽 ∈ V)
43resiexd 7236 . . 3 ((𝜑𝐼 = (𝑁 − 1)) → ( I ↾ 𝐽) ∈ V)
5 simpr 484 . . . . . . 7 ((𝜑𝐼 = (𝑁 − 1)) → 𝐼 = (𝑁 − 1))
6 fzo0pmtrlast.i . . . . . . . 8 (𝜑𝐼𝐽)
76adantr 480 . . . . . . 7 ((𝜑𝐼 = (𝑁 − 1)) → 𝐼𝐽)
85, 7eqeltrrd 2840 . . . . . 6 ((𝜑𝐼 = (𝑁 − 1)) → (𝑁 − 1) ∈ 𝐽)
9 fvresi 7193 . . . . . 6 ((𝑁 − 1) ∈ 𝐽 → (( I ↾ 𝐽)‘(𝑁 − 1)) = (𝑁 − 1))
108, 9syl 17 . . . . 5 ((𝜑𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽)‘(𝑁 − 1)) = (𝑁 − 1))
1110, 5eqtr4d 2778 . . . 4 ((𝜑𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼)
12 f1oi 6887 . . . 4 ( I ↾ 𝐽):𝐽1-1-onto𝐽
1311, 12jctil 519 . . 3 ((𝜑𝐼 = (𝑁 − 1)) → (( I ↾ 𝐽):𝐽1-1-onto𝐽 ∧ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼))
14 f1oeq1 6837 . . . 4 (𝑠 = ( I ↾ 𝐽) → (𝑠:𝐽1-1-onto𝐽 ↔ ( I ↾ 𝐽):𝐽1-1-onto𝐽))
15 fveq1 6906 . . . . 5 (𝑠 = ( I ↾ 𝐽) → (𝑠‘(𝑁 − 1)) = (( I ↾ 𝐽)‘(𝑁 − 1)))
1615eqeq1d 2737 . . . 4 (𝑠 = ( I ↾ 𝐽) → ((𝑠‘(𝑁 − 1)) = 𝐼 ↔ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼))
1714, 16anbi12d 632 . . 3 (𝑠 = ( I ↾ 𝐽) → ((𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼) ↔ (( I ↾ 𝐽):𝐽1-1-onto𝐽 ∧ (( I ↾ 𝐽)‘(𝑁 − 1)) = 𝐼)))
184, 13, 17spcedv 3598 . 2 ((𝜑𝐼 = (𝑁 − 1)) → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼))
19 fvexd 6922 . . 3 ((𝜑𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ V)
202a1i 11 . . . . . 6 ((𝜑𝐼 ≠ (𝑁 − 1)) → 𝐽 ∈ V)
216adantr 480 . . . . . . 7 ((𝜑𝐼 ≠ (𝑁 − 1)) → 𝐼𝐽)
226, 1eleqtrdi 2849 . . . . . . . . . 10 (𝜑𝐼 ∈ (0..^𝑁))
23 elfzo0 13737 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
2423simp2bi 1145 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑁) → 𝑁 ∈ ℕ)
25 fzo0end 13794 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁))
2622, 24, 253syl 18 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ (0..^𝑁))
2726, 1eleqtrrdi 2850 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ 𝐽)
2827adantr 480 . . . . . . 7 ((𝜑𝐼 ≠ (𝑁 − 1)) → (𝑁 − 1) ∈ 𝐽)
2921, 28prssd 4827 . . . . . 6 ((𝜑𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ⊆ 𝐽)
30 simpr 484 . . . . . . 7 ((𝜑𝐼 ≠ (𝑁 − 1)) → 𝐼 ≠ (𝑁 − 1))
31 enpr2 10040 . . . . . . 7 ((𝐼𝐽 ∧ (𝑁 − 1) ∈ 𝐽𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ≈ 2o)
3221, 28, 30, 31syl3anc 1370 . . . . . 6 ((𝜑𝐼 ≠ (𝑁 − 1)) → {𝐼, (𝑁 − 1)} ≈ 2o)
33 eqid 2735 . . . . . . 7 (pmTrsp‘𝐽) = (pmTrsp‘𝐽)
34 eqid 2735 . . . . . . 7 ran (pmTrsp‘𝐽) = ran (pmTrsp‘𝐽)
3533, 34pmtrrn 19490 . . . . . 6 ((𝐽 ∈ V ∧ {𝐼, (𝑁 − 1)} ⊆ 𝐽 ∧ {𝐼, (𝑁 − 1)} ≈ 2o) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽))
3620, 29, 32, 35syl3anc 1370 . . . . 5 ((𝜑𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽))
3733, 34pmtrff1o 19496 . . . . 5 (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) ∈ ran (pmTrsp‘𝐽) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽)
3836, 37syl 17 . . . 4 ((𝜑𝐼 ≠ (𝑁 − 1)) → ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽)
3933pmtrprfv2 33091 . . . . 5 ((𝐽 ∈ V ∧ (𝐼𝐽 ∧ (𝑁 − 1) ∈ 𝐽𝐼 ≠ (𝑁 − 1))) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)
4020, 21, 28, 30, 39syl13anc 1371 . . . 4 ((𝜑𝐼 ≠ (𝑁 − 1)) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)
4138, 40jca 511 . . 3 ((𝜑𝐼 ≠ (𝑁 − 1)) → (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽 ∧ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼))
42 f1oeq1 6837 . . . 4 (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → (𝑠:𝐽1-1-onto𝐽 ↔ ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽))
43 fveq1 6906 . . . . 5 (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → (𝑠‘(𝑁 − 1)) = (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)))
4443eqeq1d 2737 . . . 4 (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → ((𝑠‘(𝑁 − 1)) = 𝐼 ↔ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼))
4542, 44anbi12d 632 . . 3 (𝑠 = ((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}) → ((𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼) ↔ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)}):𝐽1-1-onto𝐽 ∧ (((pmTrsp‘𝐽)‘{𝐼, (𝑁 − 1)})‘(𝑁 − 1)) = 𝐼)))
4619, 41, 45spcedv 3598 . 2 ((𝜑𝐼 ≠ (𝑁 − 1)) → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼))
4718, 46pm2.61dane 3027 1 (𝜑 → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘(𝑁 − 1)) = 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  Vcvv 3478  wss 3963  {cpr 4633   class class class wbr 5148   I cid 5582  ran crn 5690  cres 5691  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  2oc2o 8499  cen 8981  0cc0 11153  1c1 11154   < clt 11293  cmin 11490  cn 12264  0cn0 12524  ..^cfzo 13691  pmTrspcpmtr 19474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-pmtr 19475
This theorem is referenced by:  wrdpmtrlast  33096
  Copyright terms: Public domain W3C validator