Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wrdpmtrlast Structured version   Visualization version   GIF version

Theorem wrdpmtrlast 33096
Description: Reorder a word, so that the symbol given at index 𝐼 is at the end. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
wrdpmtrlast.1 𝐽 = (0..^(♯‘𝑊))
wrdpmtrlast.2 (𝜑𝐼𝐽)
wrdpmtrlast.3 (𝜑𝑊 ∈ Word 𝑆)
wrdpmtrlast.4 𝑈 = ((𝑊𝑠) prefix ((♯‘𝑊) − 1))
Assertion
Ref Expression
wrdpmtrlast (𝜑 → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑊𝑠) = (𝑈 ++ ⟨“(𝑊𝐼)”⟩)))
Distinct variable groups:   𝐼,𝑠   𝐽,𝑠   𝑊,𝑠   𝜑,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝑈(𝑠)

Proof of Theorem wrdpmtrlast
StepHypRef Expression
1 wrdpmtrlast.1 . . 3 𝐽 = (0..^(♯‘𝑊))
2 wrdpmtrlast.2 . . 3 (𝜑𝐼𝐽)
31, 2fzo0pmtrlast 33095 . 2 (𝜑 → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼))
4 simplr 769 . . . . 5 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → 𝑠:𝐽1-1-onto𝐽)
5 wrdpmtrlast.4 . . . . . . . 8 𝑈 = ((𝑊𝑠) prefix ((♯‘𝑊) − 1))
6 f1of 6849 . . . . . . . . . . . . . . 15 (𝑠:𝐽1-1-onto𝐽𝑠:𝐽𝐽)
71feq2i 6729 . . . . . . . . . . . . . . 15 (𝑠:𝐽𝐽𝑠:(0..^(♯‘𝑊))⟶𝐽)
86, 7sylib 218 . . . . . . . . . . . . . 14 (𝑠:𝐽1-1-onto𝐽𝑠:(0..^(♯‘𝑊))⟶𝐽)
94, 8syl 17 . . . . . . . . . . . . 13 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → 𝑠:(0..^(♯‘𝑊))⟶𝐽)
10 iswrdi 14553 . . . . . . . . . . . . 13 (𝑠:(0..^(♯‘𝑊))⟶𝐽𝑠 ∈ Word 𝐽)
119, 10syl 17 . . . . . . . . . . . 12 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → 𝑠 ∈ Word 𝐽)
12 eqidd 2736 . . . . . . . . . . . . . 14 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (♯‘𝑊) = (♯‘𝑊))
13 wrdpmtrlast.3 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ Word 𝑆)
1413ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → 𝑊 ∈ Word 𝑆)
1512, 14wrdfd 32903 . . . . . . . . . . . . 13 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → 𝑊:(0..^(♯‘𝑊))⟶𝑆)
161feq2i 6729 . . . . . . . . . . . . 13 (𝑊:𝐽𝑆𝑊:(0..^(♯‘𝑊))⟶𝑆)
1715, 16sylibr 234 . . . . . . . . . . . 12 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → 𝑊:𝐽𝑆)
18 lenco 14868 . . . . . . . . . . . 12 ((𝑠 ∈ Word 𝐽𝑊:𝐽𝑆) → (♯‘(𝑊𝑠)) = (♯‘𝑠))
1911, 17, 18syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (♯‘(𝑊𝑠)) = (♯‘𝑠))
209ffund 6741 . . . . . . . . . . . . 13 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → Fun 𝑠)
21 hashfundm 14478 . . . . . . . . . . . . 13 ((𝑠 ∈ Word 𝐽 ∧ Fun 𝑠) → (♯‘𝑠) = (♯‘dom 𝑠))
2211, 20, 21syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (♯‘𝑠) = (♯‘dom 𝑠))
239fdmd 6747 . . . . . . . . . . . . 13 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → dom 𝑠 = (0..^(♯‘𝑊)))
2423fveq2d 6911 . . . . . . . . . . . 12 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (♯‘dom 𝑠) = (♯‘(0..^(♯‘𝑊))))
252, 1eleqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ (0..^(♯‘𝑊)))
2625ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → 𝐼 ∈ (0..^(♯‘𝑊)))
27 elfzo0 13737 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
2827simp2bi 1145 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
2926, 28syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (♯‘𝑊) ∈ ℕ)
3029nnnn0d 12585 . . . . . . . . . . . . 13 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (♯‘𝑊) ∈ ℕ0)
31 hashfzo0 14466 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊))
3230, 31syl 17 . . . . . . . . . . . 12 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊))
3322, 24, 323eqtrd 2779 . . . . . . . . . . 11 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (♯‘𝑠) = (♯‘𝑊))
3419, 33eqtr2d 2776 . . . . . . . . . 10 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (♯‘𝑊) = (♯‘(𝑊𝑠)))
3534oveq1d 7446 . . . . . . . . 9 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → ((♯‘𝑊) − 1) = ((♯‘(𝑊𝑠)) − 1))
3635oveq2d 7447 . . . . . . . 8 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → ((𝑊𝑠) prefix ((♯‘𝑊) − 1)) = ((𝑊𝑠) prefix ((♯‘(𝑊𝑠)) − 1)))
375, 36eqtrid 2787 . . . . . . 7 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → 𝑈 = ((𝑊𝑠) prefix ((♯‘(𝑊𝑠)) − 1)))
3826ne0d 4348 . . . . . . . . . . 11 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (0..^(♯‘𝑊)) ≠ ∅)
39 f0dom0 6793 . . . . . . . . . . . . 13 (𝑠:(0..^(♯‘𝑊))⟶𝐽 → ((0..^(♯‘𝑊)) = ∅ ↔ 𝑠 = ∅))
4039necon3bid 2983 . . . . . . . . . . . 12 (𝑠:(0..^(♯‘𝑊))⟶𝐽 → ((0..^(♯‘𝑊)) ≠ ∅ ↔ 𝑠 ≠ ∅))
4140biimpa 476 . . . . . . . . . . 11 ((𝑠:(0..^(♯‘𝑊))⟶𝐽 ∧ (0..^(♯‘𝑊)) ≠ ∅) → 𝑠 ≠ ∅)
429, 38, 41syl2anc 584 . . . . . . . . . 10 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → 𝑠 ≠ ∅)
43 lswco 14875 . . . . . . . . . 10 ((𝑠 ∈ Word 𝐽𝑠 ≠ ∅ ∧ 𝑊:𝐽𝑆) → (lastS‘(𝑊𝑠)) = (𝑊‘(lastS‘𝑠)))
4411, 42, 17, 43syl3anc 1370 . . . . . . . . 9 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (lastS‘(𝑊𝑠)) = (𝑊‘(lastS‘𝑠)))
45 lsw 14599 . . . . . . . . . . . 12 (𝑠 ∈ Word 𝐽 → (lastS‘𝑠) = (𝑠‘((♯‘𝑠) − 1)))
4611, 45syl 17 . . . . . . . . . . 11 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (lastS‘𝑠) = (𝑠‘((♯‘𝑠) − 1)))
4733oveq1d 7446 . . . . . . . . . . . 12 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → ((♯‘𝑠) − 1) = ((♯‘𝑊) − 1))
4847fveq2d 6911 . . . . . . . . . . 11 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (𝑠‘((♯‘𝑠) − 1)) = (𝑠‘((♯‘𝑊) − 1)))
49 simpr 484 . . . . . . . . . . 11 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (𝑠‘((♯‘𝑊) − 1)) = 𝐼)
5046, 48, 493eqtrd 2779 . . . . . . . . . 10 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (lastS‘𝑠) = 𝐼)
5150fveq2d 6911 . . . . . . . . 9 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (𝑊‘(lastS‘𝑠)) = (𝑊𝐼))
5244, 51eqtr2d 2776 . . . . . . . 8 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (𝑊𝐼) = (lastS‘(𝑊𝑠)))
5352s1eqd 14636 . . . . . . 7 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → ⟨“(𝑊𝐼)”⟩ = ⟨“(lastS‘(𝑊𝑠))”⟩)
5437, 53oveq12d 7449 . . . . . 6 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (𝑈 ++ ⟨“(𝑊𝐼)”⟩) = (((𝑊𝑠) prefix ((♯‘(𝑊𝑠)) − 1)) ++ ⟨“(lastS‘(𝑊𝑠))”⟩))
551, 4, 14wrdpmcl 32907 . . . . . . 7 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (𝑊𝑠) ∈ Word 𝑆)
56 fzo0end 13794 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
5729, 56syl 17 . . . . . . . . . . . 12 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
5857, 1eleqtrrdi 2850 . . . . . . . . . . 11 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → ((♯‘𝑊) − 1) ∈ 𝐽)
5917fdmd 6747 . . . . . . . . . . 11 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → dom 𝑊 = 𝐽)
6058, 59eleqtrrd 2842 . . . . . . . . . 10 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → ((♯‘𝑊) − 1) ∈ dom 𝑊)
61 dff1o5 6858 . . . . . . . . . . . . 13 (𝑠:𝐽1-1-onto𝐽 ↔ (𝑠:𝐽1-1𝐽 ∧ ran 𝑠 = 𝐽))
6261simprbi 496 . . . . . . . . . . . 12 (𝑠:𝐽1-1-onto𝐽 → ran 𝑠 = 𝐽)
634, 62syl 17 . . . . . . . . . . 11 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → ran 𝑠 = 𝐽)
6458, 63eleqtrrd 2842 . . . . . . . . . 10 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → ((♯‘𝑊) − 1) ∈ ran 𝑠)
6560, 64elind 4210 . . . . . . . . 9 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → ((♯‘𝑊) − 1) ∈ (dom 𝑊 ∩ ran 𝑠))
6665ne0d 4348 . . . . . . . 8 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (dom 𝑊 ∩ ran 𝑠) ≠ ∅)
67 coeq0 6277 . . . . . . . . 9 ((𝑊𝑠) = ∅ ↔ (dom 𝑊 ∩ ran 𝑠) = ∅)
6867necon3bii 2991 . . . . . . . 8 ((𝑊𝑠) ≠ ∅ ↔ (dom 𝑊 ∩ ran 𝑠) ≠ ∅)
6966, 68sylibr 234 . . . . . . 7 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (𝑊𝑠) ≠ ∅)
70 pfxlswccat 14748 . . . . . . 7 (((𝑊𝑠) ∈ Word 𝑆 ∧ (𝑊𝑠) ≠ ∅) → (((𝑊𝑠) prefix ((♯‘(𝑊𝑠)) − 1)) ++ ⟨“(lastS‘(𝑊𝑠))”⟩) = (𝑊𝑠))
7155, 69, 70syl2anc 584 . . . . . 6 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (((𝑊𝑠) prefix ((♯‘(𝑊𝑠)) − 1)) ++ ⟨“(lastS‘(𝑊𝑠))”⟩) = (𝑊𝑠))
7254, 71eqtr2d 2776 . . . . 5 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (𝑊𝑠) = (𝑈 ++ ⟨“(𝑊𝐼)”⟩))
734, 72jca 511 . . . 4 (((𝜑𝑠:𝐽1-1-onto𝐽) ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (𝑠:𝐽1-1-onto𝐽 ∧ (𝑊𝑠) = (𝑈 ++ ⟨“(𝑊𝐼)”⟩)))
7473expl 457 . . 3 (𝜑 → ((𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → (𝑠:𝐽1-1-onto𝐽 ∧ (𝑊𝑠) = (𝑈 ++ ⟨“(𝑊𝐼)”⟩))))
7574eximdv 1915 . 2 (𝜑 → (∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑠‘((♯‘𝑊) − 1)) = 𝐼) → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑊𝑠) = (𝑈 ++ ⟨“(𝑊𝐼)”⟩))))
763, 75mpd 15 1 (𝜑 → ∃𝑠(𝑠:𝐽1-1-onto𝐽 ∧ (𝑊𝑠) = (𝑈 ++ ⟨“(𝑊𝐼)”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  cin 3962  c0 4339   class class class wbr 5148  dom cdm 5689  ran crn 5690  ccom 5693  Fun wfun 6557  wf 6559  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   < clt 11293  cmin 11490  cn 12264  0cn0 12524  ..^cfzo 13691  chash 14366  Word cword 14549  lastSclsw 14597   ++ cconcat 14605  ⟨“cs1 14630   prefix cpfx 14705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-pmtr 19475
This theorem is referenced by:  1arithidom  33545
  Copyright terms: Public domain W3C validator