MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absrdbnd Structured version   Visualization version   GIF version

Theorem absrdbnd 14791
Description: Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.)
Assertion
Ref Expression
absrdbnd (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1))

Proof of Theorem absrdbnd
StepHypRef Expression
1 halfre 11930 . . . . . . . 8 (1 / 2) ∈ ℝ
2 readdcl 10698 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
31, 2mpan2 691 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ)
4 reflcl 13257 . . . . . . 7 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
65recnd 10747 . . . . 5 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
7 abscl 14728 . . . . 5 ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℝ)
86, 7syl 17 . . . 4 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℝ)
9 recn 10705 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
10 abscl 14728 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
119, 10syl 17 . . . 4 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
12 1re 10719 . . . . 5 1 ∈ ℝ
1312a1i 11 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
148, 11resubcld 11146 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ∈ ℝ)
15 resubcl 11028 . . . . . . . 8 (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℝ)
165, 15mpancom 688 . . . . . . 7 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℝ)
1716recnd 10747 . . . . . 6 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
18 abscl 14728 . . . . . 6 (((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
1917, 18syl 17 . . . . 5 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
20 abs2dif 14782 . . . . . 6 (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
216, 9, 20syl2anc 587 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
221a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ)
23 rddif 14790 . . . . . 6 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
24 halflt1 11934 . . . . . . . 8 (1 / 2) < 1
251, 12, 24ltleii 10841 . . . . . . 7 (1 / 2) ≤ 1
2625a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ≤ 1)
2719, 22, 13, 23, 26letrd 10875 . . . . 5 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ 1)
2814, 19, 13, 21, 27letrd 10875 . . . 4 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ 1)
298, 11, 13, 28subled 11321 . . 3 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴))
303flcld 13259 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℤ)
31 nn0abscl 14762 . . . . . . 7 ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℕ0)
3230, 31syl 17 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℕ0)
3332nn0zd 12166 . . . . 5 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℤ)
34 peano2zm 12106 . . . . 5 ((abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℤ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ)
3533, 34syl 17 . . . 4 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ)
36 flge 13266 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ) → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴) ↔ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴))))
3711, 35, 36syl2anc 587 . . 3 (𝐴 ∈ ℝ → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴) ↔ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴))))
3829, 37mpbid 235 . 2 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴)))
39 reflcl 13257 . . . 4 ((abs‘𝐴) ∈ ℝ → (⌊‘(abs‘𝐴)) ∈ ℝ)
4011, 39syl 17 . . 3 (𝐴 ∈ ℝ → (⌊‘(abs‘𝐴)) ∈ ℝ)
418, 13, 40lesubaddd 11315 . 2 (𝐴 ∈ ℝ → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴)) ↔ (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1)))
4238, 41mpbid 235 1 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2114   class class class wbr 5030  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  1c1 10616   + caddc 10618  cle 10754  cmin 10948   / cdiv 11375  2c2 11771  0cn0 11976  cz 12062  cfl 13251  abscabs 14683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-fl 13253  df-seq 13461  df-exp 13522  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator