MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absrdbnd Structured version   Visualization version   GIF version

Theorem absrdbnd 14693
Description: Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.)
Assertion
Ref Expression
absrdbnd (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1))

Proof of Theorem absrdbnd
StepHypRef Expression
1 halfre 11839 . . . . . . . 8 (1 / 2) ∈ ℝ
2 readdcl 10609 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
31, 2mpan2 690 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ)
4 reflcl 13161 . . . . . . 7 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
65recnd 10658 . . . . 5 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
7 abscl 14630 . . . . 5 ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℝ)
86, 7syl 17 . . . 4 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℝ)
9 recn 10616 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
10 abscl 14630 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
119, 10syl 17 . . . 4 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
12 1re 10630 . . . . 5 1 ∈ ℝ
1312a1i 11 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
148, 11resubcld 11057 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ∈ ℝ)
15 resubcl 10939 . . . . . . . 8 (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℝ)
165, 15mpancom 687 . . . . . . 7 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℝ)
1716recnd 10658 . . . . . 6 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
18 abscl 14630 . . . . . 6 (((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
1917, 18syl 17 . . . . 5 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
20 abs2dif 14684 . . . . . 6 (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
216, 9, 20syl2anc 587 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
221a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ)
23 rddif 14692 . . . . . 6 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
24 halflt1 11843 . . . . . . . 8 (1 / 2) < 1
251, 12, 24ltleii 10752 . . . . . . 7 (1 / 2) ≤ 1
2625a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ≤ 1)
2719, 22, 13, 23, 26letrd 10786 . . . . 5 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ 1)
2814, 19, 13, 21, 27letrd 10786 . . . 4 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ 1)
298, 11, 13, 28subled 11232 . . 3 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴))
303flcld 13163 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℤ)
31 nn0abscl 14664 . . . . . . 7 ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℕ0)
3230, 31syl 17 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℕ0)
3332nn0zd 12073 . . . . 5 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℤ)
34 peano2zm 12013 . . . . 5 ((abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℤ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ)
3533, 34syl 17 . . . 4 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ)
36 flge 13170 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ) → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴) ↔ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴))))
3711, 35, 36syl2anc 587 . . 3 (𝐴 ∈ ℝ → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴) ↔ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴))))
3829, 37mpbid 235 . 2 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴)))
39 reflcl 13161 . . . 4 ((abs‘𝐴) ∈ ℝ → (⌊‘(abs‘𝐴)) ∈ ℝ)
4011, 39syl 17 . . 3 (𝐴 ∈ ℝ → (⌊‘(abs‘𝐴)) ∈ ℝ)
418, 13, 40lesubaddd 11226 . 2 (𝐴 ∈ ℝ → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴)) ↔ (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1)))
4238, 41mpbid 235 1 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  1c1 10527   + caddc 10529  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  0cn0 11885  cz 11969  cfl 13155  abscabs 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator