MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absrdbnd Structured version   Visualization version   GIF version

Theorem absrdbnd 15292
Description: Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.)
Assertion
Ref Expression
absrdbnd (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1))

Proof of Theorem absrdbnd
StepHypRef Expression
1 halfre 12430 . . . . . . . 8 (1 / 2) ∈ ℝ
2 readdcl 11195 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
31, 2mpan2 687 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ)
4 reflcl 13765 . . . . . . 7 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
65recnd 11246 . . . . 5 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
7 abscl 15229 . . . . 5 ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℝ)
86, 7syl 17 . . . 4 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℝ)
9 recn 11202 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
10 abscl 15229 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
119, 10syl 17 . . . 4 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
12 1re 11218 . . . . 5 1 ∈ ℝ
1312a1i 11 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
148, 11resubcld 11646 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ∈ ℝ)
15 resubcl 11528 . . . . . . . 8 (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℝ)
165, 15mpancom 684 . . . . . . 7 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℝ)
1716recnd 11246 . . . . . 6 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
18 abscl 15229 . . . . . 6 (((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
1917, 18syl 17 . . . . 5 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
20 abs2dif 15283 . . . . . 6 (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
216, 9, 20syl2anc 582 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
221a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ)
23 rddif 15291 . . . . . 6 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
24 halflt1 12434 . . . . . . . 8 (1 / 2) < 1
251, 12, 24ltleii 11341 . . . . . . 7 (1 / 2) ≤ 1
2625a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ≤ 1)
2719, 22, 13, 23, 26letrd 11375 . . . . 5 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ 1)
2814, 19, 13, 21, 27letrd 11375 . . . 4 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ 1)
298, 11, 13, 28subled 11821 . . 3 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴))
303flcld 13767 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℤ)
31 nn0abscl 15263 . . . . . . 7 ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℕ0)
3230, 31syl 17 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℕ0)
3332nn0zd 12588 . . . . 5 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℤ)
34 peano2zm 12609 . . . . 5 ((abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℤ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ)
3533, 34syl 17 . . . 4 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ)
36 flge 13774 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ) → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴) ↔ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴))))
3711, 35, 36syl2anc 582 . . 3 (𝐴 ∈ ℝ → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴) ↔ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴))))
3829, 37mpbid 231 . 2 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴)))
39 reflcl 13765 . . . 4 ((abs‘𝐴) ∈ ℝ → (⌊‘(abs‘𝐴)) ∈ ℝ)
4011, 39syl 17 . . 3 (𝐴 ∈ ℝ → (⌊‘(abs‘𝐴)) ∈ ℝ)
418, 13, 40lesubaddd 11815 . 2 (𝐴 ∈ ℝ → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴)) ↔ (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1)))
4238, 41mpbid 231 1 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2104   class class class wbr 5147  cfv 6542  (class class class)co 7411  cc 11110  cr 11111  1c1 11113   + caddc 11115  cle 11253  cmin 11448   / cdiv 11875  2c2 12271  0cn0 12476  cz 12562  cfl 13759  abscabs 15185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-fl 13761  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator