| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0d | Structured version Visualization version GIF version | ||
| Description: Auxiliary lemma 4 for gausslemma2d 27261. (Contributed by AV, 9-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0d | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem0.m | . 2 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
| 2 | gausslemma2dlem0.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 3 | 2 | gausslemma2dlem0a 27243 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4 | nnre 12169 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
| 5 | 4re 12246 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 4 ∈ ℝ) |
| 7 | 4ne0 12270 | . . . . . 6 ⊢ 4 ≠ 0 | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 4 ≠ 0) |
| 9 | 4, 6, 8 | redivcld 11986 | . . . 4 ⊢ (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ) |
| 10 | nnnn0 12425 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 11 | 10 | nn0ge0d 12482 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
| 12 | 4pos 12269 | . . . . . . 7 ⊢ 0 < 4 | |
| 13 | 5, 12 | pm3.2i 470 | . . . . . 6 ⊢ (4 ∈ ℝ ∧ 0 < 4) |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → (4 ∈ ℝ ∧ 0 < 4)) |
| 15 | divge0 12028 | . . . . 5 ⊢ (((𝑃 ∈ ℝ ∧ 0 ≤ 𝑃) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (𝑃 / 4)) | |
| 16 | 4, 11, 14, 15 | syl21anc 837 | . . . 4 ⊢ (𝑃 ∈ ℕ → 0 ≤ (𝑃 / 4)) |
| 17 | 9, 16 | jca 511 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4))) |
| 18 | flge0nn0 13758 | . . 3 ⊢ (((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)) → (⌊‘(𝑃 / 4)) ∈ ℕ0) | |
| 19 | 3, 17, 18 | 3syl 18 | . 2 ⊢ (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℕ0) |
| 20 | 1, 19 | eqeltrid 2832 | 1 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 {csn 4585 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 < clt 11184 ≤ cle 11185 / cdiv 11811 ℕcn 12162 2c2 12217 4c4 12219 ℕ0cn0 12418 ⌊cfl 13728 ℙcprime 16617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fl 13730 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-prm 16618 |
| This theorem is referenced by: gausslemma2dlem0h 27250 gausslemma2dlem2 27254 gausslemma2dlem3 27255 gausslemma2dlem4 27256 gausslemma2dlem6 27259 |
| Copyright terms: Public domain | W3C validator |