![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0d | Structured version Visualization version GIF version |
Description: Auxiliary lemma 4 for gausslemma2d 26877. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
Ref | Expression |
---|---|
gausslemma2dlem0d | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0.m | . 2 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
2 | gausslemma2dlem0.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
3 | 2 | gausslemma2dlem0a 26859 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
4 | nnre 12219 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
5 | 4re 12296 | . . . . . 6 ⊢ 4 ∈ ℝ | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 4 ∈ ℝ) |
7 | 4ne0 12320 | . . . . . 6 ⊢ 4 ≠ 0 | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 4 ≠ 0) |
9 | 4, 6, 8 | redivcld 12042 | . . . 4 ⊢ (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ) |
10 | nnnn0 12479 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
11 | 10 | nn0ge0d 12535 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
12 | 4pos 12319 | . . . . . . 7 ⊢ 0 < 4 | |
13 | 5, 12 | pm3.2i 472 | . . . . . 6 ⊢ (4 ∈ ℝ ∧ 0 < 4) |
14 | 13 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → (4 ∈ ℝ ∧ 0 < 4)) |
15 | divge0 12083 | . . . . 5 ⊢ (((𝑃 ∈ ℝ ∧ 0 ≤ 𝑃) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (𝑃 / 4)) | |
16 | 4, 11, 14, 15 | syl21anc 837 | . . . 4 ⊢ (𝑃 ∈ ℕ → 0 ≤ (𝑃 / 4)) |
17 | 9, 16 | jca 513 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4))) |
18 | flge0nn0 13785 | . . 3 ⊢ (((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)) → (⌊‘(𝑃 / 4)) ∈ ℕ0) | |
19 | 3, 17, 18 | 3syl 18 | . 2 ⊢ (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℕ0) |
20 | 1, 19 | eqeltrid 2838 | 1 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∖ cdif 3946 {csn 4629 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 ℝcr 11109 0cc0 11110 < clt 11248 ≤ cle 11249 / cdiv 11871 ℕcn 12212 2c2 12267 4c4 12269 ℕ0cn0 12472 ⌊cfl 13755 ℙcprime 16608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-fl 13757 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-dvds 16198 df-prm 16609 |
This theorem is referenced by: gausslemma2dlem0h 26866 gausslemma2dlem2 26870 gausslemma2dlem3 26871 gausslemma2dlem4 26872 gausslemma2dlem6 26875 |
Copyright terms: Public domain | W3C validator |