MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0d Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0d 25946
Description: Auxiliary lemma 4 for gausslemma2d 25961. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem0d (𝜑𝑀 ∈ ℕ0)

Proof of Theorem gausslemma2dlem0d
StepHypRef Expression
1 gausslemma2dlem0.m . 2 𝑀 = (⌊‘(𝑃 / 4))
2 gausslemma2dlem0.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
32gausslemma2dlem0a 25943 . . 3 (𝜑𝑃 ∈ ℕ)
4 nnre 11641 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
5 4re 11718 . . . . . 6 4 ∈ ℝ
65a1i 11 . . . . 5 (𝑃 ∈ ℕ → 4 ∈ ℝ)
7 4ne0 11742 . . . . . 6 4 ≠ 0
87a1i 11 . . . . 5 (𝑃 ∈ ℕ → 4 ≠ 0)
94, 6, 8redivcld 11466 . . . 4 (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ)
10 nnnn0 11901 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1110nn0ge0d 11955 . . . . 5 (𝑃 ∈ ℕ → 0 ≤ 𝑃)
12 4pos 11741 . . . . . . 7 0 < 4
135, 12pm3.2i 474 . . . . . 6 (4 ∈ ℝ ∧ 0 < 4)
1413a1i 11 . . . . 5 (𝑃 ∈ ℕ → (4 ∈ ℝ ∧ 0 < 4))
15 divge0 11507 . . . . 5 (((𝑃 ∈ ℝ ∧ 0 ≤ 𝑃) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (𝑃 / 4))
164, 11, 14, 15syl21anc 836 . . . 4 (𝑃 ∈ ℕ → 0 ≤ (𝑃 / 4))
179, 16jca 515 . . 3 (𝑃 ∈ ℕ → ((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)))
18 flge0nn0 13194 . . 3 (((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)) → (⌊‘(𝑃 / 4)) ∈ ℕ0)
193, 17, 183syl 18 . 2 (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℕ0)
201, 19eqeltrid 2920 1 (𝜑𝑀 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3014  cdif 3916  {csn 4550   class class class wbr 5052  cfv 6343  (class class class)co 7149  cr 10534  0cc0 10535   < clt 10673  cle 10674   / cdiv 11295  cn 11634  2c2 11689  4c4 11691  0cn0 11894  cfl 13164  cprime 16013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-fl 13166  df-seq 13374  df-exp 13435  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-prm 16014
This theorem is referenced by:  gausslemma2dlem0h  25950  gausslemma2dlem2  25954  gausslemma2dlem3  25955  gausslemma2dlem4  25956  gausslemma2dlem6  25959
  Copyright terms: Public domain W3C validator