MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0d Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0d 27279
Description: Auxiliary lemma 4 for gausslemma2d 27294. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem0d (𝜑𝑀 ∈ ℕ0)

Proof of Theorem gausslemma2dlem0d
StepHypRef Expression
1 gausslemma2dlem0.m . 2 𝑀 = (⌊‘(𝑃 / 4))
2 gausslemma2dlem0.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
32gausslemma2dlem0a 27276 . . 3 (𝜑𝑃 ∈ ℕ)
4 nnre 12241 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
5 4re 12318 . . . . . 6 4 ∈ ℝ
65a1i 11 . . . . 5 (𝑃 ∈ ℕ → 4 ∈ ℝ)
7 4ne0 12342 . . . . . 6 4 ≠ 0
87a1i 11 . . . . 5 (𝑃 ∈ ℕ → 4 ≠ 0)
94, 6, 8redivcld 12064 . . . 4 (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ)
10 nnnn0 12501 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1110nn0ge0d 12557 . . . . 5 (𝑃 ∈ ℕ → 0 ≤ 𝑃)
12 4pos 12341 . . . . . . 7 0 < 4
135, 12pm3.2i 470 . . . . . 6 (4 ∈ ℝ ∧ 0 < 4)
1413a1i 11 . . . . 5 (𝑃 ∈ ℕ → (4 ∈ ℝ ∧ 0 < 4))
15 divge0 12105 . . . . 5 (((𝑃 ∈ ℝ ∧ 0 ≤ 𝑃) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (𝑃 / 4))
164, 11, 14, 15syl21anc 837 . . . 4 (𝑃 ∈ ℕ → 0 ≤ (𝑃 / 4))
179, 16jca 511 . . 3 (𝑃 ∈ ℕ → ((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)))
18 flge0nn0 13809 . . 3 (((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)) → (⌊‘(𝑃 / 4)) ∈ ℕ0)
193, 17, 183syl 18 . 2 (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℕ0)
201, 19eqeltrid 2832 1 (𝜑𝑀 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2935  cdif 3941  {csn 4624   class class class wbr 5142  cfv 6542  (class class class)co 7414  cr 11129  0cc0 11130   < clt 11270  cle 11271   / cdiv 11893  cn 12234  2c2 12289  4c4 12291  0cn0 12494  cfl 13779  cprime 16633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-fl 13781  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-dvds 16223  df-prm 16634
This theorem is referenced by:  gausslemma2dlem0h  27283  gausslemma2dlem2  27287  gausslemma2dlem3  27288  gausslemma2dlem4  27289  gausslemma2dlem6  27292
  Copyright terms: Public domain W3C validator