MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0d Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0d 25540
Description: Auxiliary lemma 4 for gausslemma2d 25555. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem0d (𝜑𝑀 ∈ ℕ0)

Proof of Theorem gausslemma2dlem0d
StepHypRef Expression
1 gausslemma2dlem0.m . 2 𝑀 = (⌊‘(𝑃 / 4))
2 gausslemma2dlem0.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
32gausslemma2dlem0a 25537 . . 3 (𝜑𝑃 ∈ ℕ)
4 nnre 11386 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
5 4re 11464 . . . . . 6 4 ∈ ℝ
65a1i 11 . . . . 5 (𝑃 ∈ ℕ → 4 ∈ ℝ)
7 4ne0 11494 . . . . . 6 4 ≠ 0
87a1i 11 . . . . 5 (𝑃 ∈ ℕ → 4 ≠ 0)
94, 6, 8redivcld 11205 . . . 4 (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ)
10 nnnn0 11654 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1110nn0ge0d 11709 . . . . 5 (𝑃 ∈ ℕ → 0 ≤ 𝑃)
12 4pos 11493 . . . . . . 7 0 < 4
135, 12pm3.2i 464 . . . . . 6 (4 ∈ ℝ ∧ 0 < 4)
1413a1i 11 . . . . 5 (𝑃 ∈ ℕ → (4 ∈ ℝ ∧ 0 < 4))
15 divge0 11248 . . . . 5 (((𝑃 ∈ ℝ ∧ 0 ≤ 𝑃) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (𝑃 / 4))
164, 11, 14, 15syl21anc 828 . . . 4 (𝑃 ∈ ℕ → 0 ≤ (𝑃 / 4))
179, 16jca 507 . . 3 (𝑃 ∈ ℕ → ((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)))
18 flge0nn0 12944 . . 3 (((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)) → (⌊‘(𝑃 / 4)) ∈ ℕ0)
193, 17, 183syl 18 . 2 (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℕ0)
201, 19syl5eqel 2863 1 (𝜑𝑀 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  cdif 3789  {csn 4398   class class class wbr 4888  cfv 6137  (class class class)co 6924  cr 10273  0cc0 10274   < clt 10413  cle 10414   / cdiv 11034  cn 11378  2c2 11434  4c4 11436  0cn0 11646  cfl 12914  cprime 15794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-n0 11647  df-z 11733  df-uz 11997  df-rp 12142  df-fl 12916  df-seq 13124  df-exp 13183  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-dvds 15392  df-prm 15795
This theorem is referenced by:  gausslemma2dlem0h  25544  gausslemma2dlem2  25548  gausslemma2dlem3  25549  gausslemma2dlem4  25550  gausslemma2dlem6  25553
  Copyright terms: Public domain W3C validator