| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0d | Structured version Visualization version GIF version | ||
| Description: Auxiliary lemma 4 for gausslemma2d 27337. (Contributed by AV, 9-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0d | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem0.m | . 2 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
| 2 | gausslemma2dlem0.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 3 | 2 | gausslemma2dlem0a 27319 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4 | nnre 12247 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
| 5 | 4re 12324 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 4 ∈ ℝ) |
| 7 | 4ne0 12348 | . . . . . 6 ⊢ 4 ≠ 0 | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 4 ≠ 0) |
| 9 | 4, 6, 8 | redivcld 12069 | . . . 4 ⊢ (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ) |
| 10 | nnnn0 12508 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 11 | 10 | nn0ge0d 12565 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
| 12 | 4pos 12347 | . . . . . . 7 ⊢ 0 < 4 | |
| 13 | 5, 12 | pm3.2i 470 | . . . . . 6 ⊢ (4 ∈ ℝ ∧ 0 < 4) |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → (4 ∈ ℝ ∧ 0 < 4)) |
| 15 | divge0 12111 | . . . . 5 ⊢ (((𝑃 ∈ ℝ ∧ 0 ≤ 𝑃) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (𝑃 / 4)) | |
| 16 | 4, 11, 14, 15 | syl21anc 837 | . . . 4 ⊢ (𝑃 ∈ ℕ → 0 ≤ (𝑃 / 4)) |
| 17 | 9, 16 | jca 511 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4))) |
| 18 | flge0nn0 13837 | . . 3 ⊢ (((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)) → (⌊‘(𝑃 / 4)) ∈ ℕ0) | |
| 19 | 3, 17, 18 | 3syl 18 | . 2 ⊢ (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℕ0) |
| 20 | 1, 19 | eqeltrid 2838 | 1 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 < clt 11269 ≤ cle 11270 / cdiv 11894 ℕcn 12240 2c2 12295 4c4 12297 ℕ0cn0 12501 ⌊cfl 13807 ℙcprime 16690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fl 13809 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-prm 16691 |
| This theorem is referenced by: gausslemma2dlem0h 27326 gausslemma2dlem2 27330 gausslemma2dlem3 27331 gausslemma2dlem4 27332 gausslemma2dlem6 27335 |
| Copyright terms: Public domain | W3C validator |