MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0d Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0d 27403
Description: Auxiliary lemma 4 for gausslemma2d 27418. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem0d (𝜑𝑀 ∈ ℕ0)

Proof of Theorem gausslemma2dlem0d
StepHypRef Expression
1 gausslemma2dlem0.m . 2 𝑀 = (⌊‘(𝑃 / 4))
2 gausslemma2dlem0.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
32gausslemma2dlem0a 27400 . . 3 (𝜑𝑃 ∈ ℕ)
4 nnre 12273 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
5 4re 12350 . . . . . 6 4 ∈ ℝ
65a1i 11 . . . . 5 (𝑃 ∈ ℕ → 4 ∈ ℝ)
7 4ne0 12374 . . . . . 6 4 ≠ 0
87a1i 11 . . . . 5 (𝑃 ∈ ℕ → 4 ≠ 0)
94, 6, 8redivcld 12095 . . . 4 (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ)
10 nnnn0 12533 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1110nn0ge0d 12590 . . . . 5 (𝑃 ∈ ℕ → 0 ≤ 𝑃)
12 4pos 12373 . . . . . . 7 0 < 4
135, 12pm3.2i 470 . . . . . 6 (4 ∈ ℝ ∧ 0 < 4)
1413a1i 11 . . . . 5 (𝑃 ∈ ℕ → (4 ∈ ℝ ∧ 0 < 4))
15 divge0 12137 . . . . 5 (((𝑃 ∈ ℝ ∧ 0 ≤ 𝑃) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (𝑃 / 4))
164, 11, 14, 15syl21anc 838 . . . 4 (𝑃 ∈ ℕ → 0 ≤ (𝑃 / 4))
179, 16jca 511 . . 3 (𝑃 ∈ ℕ → ((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)))
18 flge0nn0 13860 . . 3 (((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)) → (⌊‘(𝑃 / 4)) ∈ ℕ0)
193, 17, 183syl 18 . 2 (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℕ0)
201, 19eqeltrid 2845 1 (𝜑𝑀 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  cdif 3948  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155   < clt 11295  cle 11296   / cdiv 11920  cn 12266  2c2 12321  4c4 12323  0cn0 12526  cfl 13830  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709
This theorem is referenced by:  gausslemma2dlem0h  27407  gausslemma2dlem2  27411  gausslemma2dlem3  27412  gausslemma2dlem4  27413  gausslemma2dlem6  27416
  Copyright terms: Public domain W3C validator