| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0d | Structured version Visualization version GIF version | ||
| Description: Auxiliary lemma 4 for gausslemma2d 27312. (Contributed by AV, 9-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0d | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem0.m | . 2 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
| 2 | gausslemma2dlem0.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 3 | 2 | gausslemma2dlem0a 27294 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4 | nnre 12132 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
| 5 | 4re 12209 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 4 ∈ ℝ) |
| 7 | 4ne0 12233 | . . . . . 6 ⊢ 4 ≠ 0 | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 4 ≠ 0) |
| 9 | 4, 6, 8 | redivcld 11949 | . . . 4 ⊢ (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ) |
| 10 | nnnn0 12388 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 11 | 10 | nn0ge0d 12445 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
| 12 | 4pos 12232 | . . . . . . 7 ⊢ 0 < 4 | |
| 13 | 5, 12 | pm3.2i 470 | . . . . . 6 ⊢ (4 ∈ ℝ ∧ 0 < 4) |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → (4 ∈ ℝ ∧ 0 < 4)) |
| 15 | divge0 11991 | . . . . 5 ⊢ (((𝑃 ∈ ℝ ∧ 0 ≤ 𝑃) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (𝑃 / 4)) | |
| 16 | 4, 11, 14, 15 | syl21anc 837 | . . . 4 ⊢ (𝑃 ∈ ℕ → 0 ≤ (𝑃 / 4)) |
| 17 | 9, 16 | jca 511 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4))) |
| 18 | flge0nn0 13724 | . . 3 ⊢ (((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)) → (⌊‘(𝑃 / 4)) ∈ ℕ0) | |
| 19 | 3, 17, 18 | 3syl 18 | . 2 ⊢ (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℕ0) |
| 20 | 1, 19 | eqeltrid 2835 | 1 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 {csn 4573 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 < clt 11146 ≤ cle 11147 / cdiv 11774 ℕcn 12125 2c2 12180 4c4 12182 ℕ0cn0 12381 ⌊cfl 13694 ℙcprime 16582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 |
| This theorem is referenced by: gausslemma2dlem0h 27301 gausslemma2dlem2 27305 gausslemma2dlem3 27306 gausslemma2dlem4 27307 gausslemma2dlem6 27310 |
| Copyright terms: Public domain | W3C validator |