MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0d Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0d 26578
Description: Auxiliary lemma 4 for gausslemma2d 26593. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem0d (𝜑𝑀 ∈ ℕ0)

Proof of Theorem gausslemma2dlem0d
StepHypRef Expression
1 gausslemma2dlem0.m . 2 𝑀 = (⌊‘(𝑃 / 4))
2 gausslemma2dlem0.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
32gausslemma2dlem0a 26575 . . 3 (𝜑𝑃 ∈ ℕ)
4 nnre 12050 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
5 4re 12127 . . . . . 6 4 ∈ ℝ
65a1i 11 . . . . 5 (𝑃 ∈ ℕ → 4 ∈ ℝ)
7 4ne0 12151 . . . . . 6 4 ≠ 0
87a1i 11 . . . . 5 (𝑃 ∈ ℕ → 4 ≠ 0)
94, 6, 8redivcld 11873 . . . 4 (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ)
10 nnnn0 12310 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1110nn0ge0d 12366 . . . . 5 (𝑃 ∈ ℕ → 0 ≤ 𝑃)
12 4pos 12150 . . . . . . 7 0 < 4
135, 12pm3.2i 471 . . . . . 6 (4 ∈ ℝ ∧ 0 < 4)
1413a1i 11 . . . . 5 (𝑃 ∈ ℕ → (4 ∈ ℝ ∧ 0 < 4))
15 divge0 11914 . . . . 5 (((𝑃 ∈ ℝ ∧ 0 ≤ 𝑃) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (𝑃 / 4))
164, 11, 14, 15syl21anc 835 . . . 4 (𝑃 ∈ ℕ → 0 ≤ (𝑃 / 4))
179, 16jca 512 . . 3 (𝑃 ∈ ℕ → ((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)))
18 flge0nn0 13610 . . 3 (((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)) → (⌊‘(𝑃 / 4)) ∈ ℕ0)
193, 17, 183syl 18 . 2 (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℕ0)
201, 19eqeltrid 2842 1 (𝜑𝑀 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2941  cdif 3893  {csn 4569   class class class wbr 5085  cfv 6463  (class class class)co 7313  cr 10940  0cc0 10941   < clt 11079  cle 11080   / cdiv 11702  cn 12043  2c2 12098  4c4 12100  0cn0 12303  cfl 13580  cprime 16443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-2o 8343  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-sup 9269  df-inf 9270  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-n0 12304  df-z 12390  df-uz 12653  df-rp 12801  df-fl 13582  df-seq 13792  df-exp 13853  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-dvds 16033  df-prm 16444
This theorem is referenced by:  gausslemma2dlem0h  26582  gausslemma2dlem2  26586  gausslemma2dlem3  26587  gausslemma2dlem4  26588  gausslemma2dlem6  26591
  Copyright terms: Public domain W3C validator