![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg3nbgrvtxlem | Structured version Visualization version GIF version |
Description: Lemma for gpg3nbgrvtx0ALT 47920 and gpg3nbgrvtx1 47921. For this theorem, it is essential that 2 < 𝑁 and 𝐾 < (𝑁 / 2)! (Contributed by AV, 3-Sep-2025.) (Proof shortened by AV, 9-Sep-2025.) |
Ref | Expression |
---|---|
gpg3nbgrvtxlem | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ ((𝐴 − 𝐾) mod 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzge3nn 12964 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ) |
3 | elfzoelz 13727 | . . 3 ⊢ (𝐴 ∈ (0..^𝑁) → 𝐴 ∈ ℤ) | |
4 | 3 | 3ad2ant3 1135 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → 𝐴 ∈ ℤ) |
5 | elfzoelz 13727 | . . 3 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ) | |
6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → 𝐾 ∈ ℤ) |
7 | 5 | zcnd 12755 | . . . . . 6 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℂ) |
8 | 2times 12434 | . . . . . . 7 ⊢ (𝐾 ∈ ℂ → (2 · 𝐾) = (𝐾 + 𝐾)) | |
9 | 8 | eqcomd 2746 | . . . . . 6 ⊢ (𝐾 ∈ ℂ → (𝐾 + 𝐾) = (2 · 𝐾)) |
10 | 7, 9 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → (𝐾 + 𝐾) = (2 · 𝐾)) |
11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝐾 + 𝐾) = (2 · 𝐾)) |
12 | 1red 11294 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ∈ ℝ) | |
13 | 5 | zred 12754 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℝ) |
14 | 2z 12681 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 2 ∈ ℤ) |
16 | 15, 5 | zmulcld 12760 | . . . . . . . . 9 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → (2 · 𝐾) ∈ ℤ) |
17 | 16 | zred 12754 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → (2 · 𝐾) ∈ ℝ) |
18 | elfzole1 13735 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ≤ 𝐾) | |
19 | elfzo1 13780 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) | |
20 | 19 | simp1bi 1145 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℕ) |
21 | 20 | nnnn0d 12619 | . . . . . . . . 9 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℕ0) |
22 | nn0le2x 12612 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ≤ (2 · 𝐾)) | |
23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ≤ (2 · 𝐾)) |
24 | 12, 13, 17, 18, 23 | letrd 11450 | . . . . . . 7 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ≤ (2 · 𝐾)) |
25 | 24 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 1 ≤ (2 · 𝐾)) |
26 | 2tceilhalfelfzo1 47905 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (2 · 𝐾) < 𝑁) | |
27 | 25, 26 | jca 511 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁)) |
28 | breq2 5171 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ↔ 1 ≤ (2 · 𝐾))) | |
29 | breq1 5170 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((𝐾 + 𝐾) < 𝑁 ↔ (2 · 𝐾) < 𝑁)) | |
30 | 28, 29 | anbi12d 631 | . . . . 5 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁) ↔ (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁))) |
31 | 27, 30 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁))) |
32 | 11, 31 | mpd 15 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
33 | 32 | 3adant3 1132 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
34 | submodneaddmod 47274 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ ((𝐴 − 𝐾) mod 𝑁)) | |
35 | 2, 4, 6, 6, 33, 34 | syl131anc 1383 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ ((𝐴 − 𝐾) mod 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5167 ‘cfv 6576 (class class class)co 7451 ℂcc 11185 0cc0 11187 1c1 11188 + caddc 11190 · cmul 11192 < clt 11327 ≤ cle 11328 − cmin 11524 / cdiv 11952 ℕcn 12298 2c2 12353 3c3 12354 ℕ0cn0 12558 ℤcz 12645 ℤ≥cuz 12910 ..^cfzo 13722 ⌈cceil 13858 mod cmo 13936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5318 ax-nul 5325 ax-pow 5384 ax-pr 5448 ax-un 7773 ax-cnex 11243 ax-resscn 11244 ax-1cn 11245 ax-icn 11246 ax-addcl 11247 ax-addrcl 11248 ax-mulcl 11249 ax-mulrcl 11250 ax-mulcom 11251 ax-addass 11252 ax-mulass 11253 ax-distr 11254 ax-i2m1 11255 ax-1ne0 11256 ax-1rid 11257 ax-rnegex 11258 ax-rrecex 11259 ax-cnre 11260 ax-pre-lttri 11261 ax-pre-lttrn 11262 ax-pre-ltadd 11263 ax-pre-mulgt0 11264 ax-pre-sup 11265 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4933 df-iun 5018 df-br 5168 df-opab 5230 df-mpt 5251 df-tr 5285 df-id 5594 df-eprel 5600 df-po 5608 df-so 5609 df-fr 5653 df-we 5655 df-xp 5707 df-rel 5708 df-cnv 5709 df-co 5710 df-dm 5711 df-rn 5712 df-res 5713 df-ima 5714 df-pred 6335 df-ord 6401 df-on 6402 df-lim 6403 df-suc 6404 df-iota 6528 df-fun 6578 df-fn 6579 df-f 6580 df-f1 6581 df-fo 6582 df-f1o 6583 df-fv 6584 df-riota 7407 df-ov 7454 df-oprab 7455 df-mpo 7456 df-om 7907 df-1st 8033 df-2nd 8034 df-frecs 8325 df-wrecs 8356 df-recs 8430 df-rdg 8469 df-er 8766 df-en 9007 df-dom 9008 df-sdom 9009 df-sup 9514 df-inf 9515 df-pnf 11329 df-mnf 11330 df-xr 11331 df-ltxr 11332 df-le 11333 df-sub 11526 df-neg 11527 df-div 11953 df-nn 12299 df-2 12361 df-3 12362 df-n0 12559 df-z 12646 df-uz 12911 df-rp 13067 df-fz 13579 df-fzo 13723 df-fl 13859 df-ceil 13860 df-mod 13937 df-dvds 16320 |
This theorem is referenced by: gpg3nbgrvtx0ALT 47920 gpg3nbgrvtx1 47921 |
Copyright terms: Public domain | W3C validator |