| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg3nbgrvtxlem | Structured version Visualization version GIF version | ||
| Description: Lemma for gpg3nbgrvtx0ALT 48006 and gpg3nbgrvtx1 48007. For this theorem, it is essential that 2 < 𝑁 and 𝐾 < (𝑁 / 2)! (Contributed by AV, 3-Sep-2025.) (Proof shortened by AV, 9-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpg3nbgrvtxlem | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ ((𝐴 − 𝐾) mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzge3nn 12914 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ) |
| 3 | elfzoelz 13681 | . . 3 ⊢ (𝐴 ∈ (0..^𝑁) → 𝐴 ∈ ℤ) | |
| 4 | 3 | 3ad2ant3 1135 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → 𝐴 ∈ ℤ) |
| 5 | elfzoelz 13681 | . . 3 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ) | |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → 𝐾 ∈ ℤ) |
| 7 | 5 | zcnd 12706 | . . . . . 6 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℂ) |
| 8 | 2times 12384 | . . . . . . 7 ⊢ (𝐾 ∈ ℂ → (2 · 𝐾) = (𝐾 + 𝐾)) | |
| 9 | 8 | eqcomd 2740 | . . . . . 6 ⊢ (𝐾 ∈ ℂ → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 10 | 7, 9 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 12 | 1red 11244 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ∈ ℝ) | |
| 13 | 5 | zred 12705 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℝ) |
| 14 | 2z 12632 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
| 15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 2 ∈ ℤ) |
| 16 | 15, 5 | zmulcld 12711 | . . . . . . . . 9 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → (2 · 𝐾) ∈ ℤ) |
| 17 | 16 | zred 12705 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → (2 · 𝐾) ∈ ℝ) |
| 18 | elfzole1 13689 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ≤ 𝐾) | |
| 19 | elfzo1 13734 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) | |
| 20 | 19 | simp1bi 1145 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℕ) |
| 21 | 20 | nnnn0d 12570 | . . . . . . . . 9 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℕ0) |
| 22 | nn0le2x 12563 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ≤ (2 · 𝐾)) | |
| 23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ≤ (2 · 𝐾)) |
| 24 | 12, 13, 17, 18, 23 | letrd 11400 | . . . . . . 7 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ≤ (2 · 𝐾)) |
| 25 | 24 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 1 ≤ (2 · 𝐾)) |
| 26 | 2tceilhalfelfzo1 47991 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (2 · 𝐾) < 𝑁) | |
| 27 | 25, 26 | jca 511 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁)) |
| 28 | breq2 5127 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ↔ 1 ≤ (2 · 𝐾))) | |
| 29 | breq1 5126 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((𝐾 + 𝐾) < 𝑁 ↔ (2 · 𝐾) < 𝑁)) | |
| 30 | 28, 29 | anbi12d 632 | . . . . 5 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁) ↔ (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁))) |
| 31 | 27, 30 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁))) |
| 32 | 11, 31 | mpd 15 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
| 33 | 32 | 3adant3 1132 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
| 34 | submodneaddmod 47326 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ ((𝐴 − 𝐾) mod 𝑁)) | |
| 35 | 2, 4, 6, 6, 33, 34 | syl131anc 1384 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ ((𝐴 − 𝐾) mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 0cc0 11137 1c1 11138 + caddc 11140 · cmul 11142 < clt 11277 ≤ cle 11278 − cmin 11474 / cdiv 11902 ℕcn 12248 2c2 12303 3c3 12304 ℕ0cn0 12509 ℤcz 12596 ℤ≥cuz 12860 ..^cfzo 13676 ⌈cceil 13813 mod cmo 13891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-fz 13530 df-fzo 13677 df-fl 13814 df-ceil 13815 df-mod 13892 df-dvds 16274 |
| This theorem is referenced by: gpg3nbgrvtx0ALT 48006 gpg3nbgrvtx1 48007 |
| Copyright terms: Public domain | W3C validator |