![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg3nbgrvtxlem | Structured version Visualization version GIF version |
Description: Lemma for gpg3nbgrvtx0ALT 48006 and gpg3nbgrvtx1 48007. For this theorem, it is essential that 2 < 𝑁 and 𝐾 < (𝑁 / 2)! (Contributed by AV, 3-Sep-2025.) (Proof shortened by AV, 9-Sep-2025.) |
Ref | Expression |
---|---|
gpg3nbgrvtxlem | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ ((𝐴 − 𝐾) mod 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzge3nn 12928 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
2 | 1 | 3ad2ant1 1134 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ) |
3 | elfzoelz 13695 | . . 3 ⊢ (𝐴 ∈ (0..^𝑁) → 𝐴 ∈ ℤ) | |
4 | 3 | 3ad2ant3 1136 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → 𝐴 ∈ ℤ) |
5 | elfzoelz 13695 | . . 3 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ) | |
6 | 5 | 3ad2ant2 1135 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → 𝐾 ∈ ℤ) |
7 | 5 | zcnd 12719 | . . . . . 6 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℂ) |
8 | 2times 12398 | . . . . . . 7 ⊢ (𝐾 ∈ ℂ → (2 · 𝐾) = (𝐾 + 𝐾)) | |
9 | 8 | eqcomd 2742 | . . . . . 6 ⊢ (𝐾 ∈ ℂ → (𝐾 + 𝐾) = (2 · 𝐾)) |
10 | 7, 9 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → (𝐾 + 𝐾) = (2 · 𝐾)) |
11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝐾 + 𝐾) = (2 · 𝐾)) |
12 | 1red 11258 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ∈ ℝ) | |
13 | 5 | zred 12718 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℝ) |
14 | 2z 12645 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 2 ∈ ℤ) |
16 | 15, 5 | zmulcld 12724 | . . . . . . . . 9 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → (2 · 𝐾) ∈ ℤ) |
17 | 16 | zred 12718 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → (2 · 𝐾) ∈ ℝ) |
18 | elfzole1 13703 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ≤ 𝐾) | |
19 | elfzo1 13748 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) | |
20 | 19 | simp1bi 1146 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℕ) |
21 | 20 | nnnn0d 12583 | . . . . . . . . 9 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℕ0) |
22 | nn0le2x 12576 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ≤ (2 · 𝐾)) | |
23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ≤ (2 · 𝐾)) |
24 | 12, 13, 17, 18, 23 | letrd 11414 | . . . . . . 7 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 1 ≤ (2 · 𝐾)) |
25 | 24 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 1 ≤ (2 · 𝐾)) |
26 | 2tceilhalfelfzo1 47991 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (2 · 𝐾) < 𝑁) | |
27 | 25, 26 | jca 511 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁)) |
28 | breq2 5145 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ↔ 1 ≤ (2 · 𝐾))) | |
29 | breq1 5144 | . . . . . 6 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((𝐾 + 𝐾) < 𝑁 ↔ (2 · 𝐾) < 𝑁)) | |
30 | 28, 29 | anbi12d 632 | . . . . 5 ⊢ ((𝐾 + 𝐾) = (2 · 𝐾) → ((1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁) ↔ (1 ≤ (2 · 𝐾) ∧ (2 · 𝐾) < 𝑁))) |
31 | 27, 30 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → ((𝐾 + 𝐾) = (2 · 𝐾) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁))) |
32 | 11, 31 | mpd 15 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
33 | 32 | 3adant3 1133 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) |
34 | submodneaddmod 47326 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (1 ≤ (𝐾 + 𝐾) ∧ (𝐾 + 𝐾) < 𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ ((𝐴 − 𝐾) mod 𝑁)) | |
35 | 2, 4, 6, 6, 33, 34 | syl131anc 1385 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ ((𝐴 − 𝐾) mod 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2939 class class class wbr 5141 ‘cfv 6559 (class class class)co 7429 ℂcc 11149 0cc0 11151 1c1 11152 + caddc 11154 · cmul 11156 < clt 11291 ≤ cle 11292 − cmin 11488 / cdiv 11916 ℕcn 12262 2c2 12317 3c3 12318 ℕ0cn0 12522 ℤcz 12609 ℤ≥cuz 12874 ..^cfzo 13690 ⌈cceil 13827 mod cmo 13905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-pre-sup 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-sup 9478 df-inf 9479 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-2 12325 df-3 12326 df-n0 12523 df-z 12610 df-uz 12875 df-rp 13031 df-fz 13544 df-fzo 13691 df-fl 13828 df-ceil 13829 df-mod 13906 df-dvds 16287 |
This theorem is referenced by: gpg3nbgrvtx0ALT 48006 gpg3nbgrvtx1 48007 |
Copyright terms: Public domain | W3C validator |