Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgvtxedg1 Structured version   Visualization version   GIF version

Theorem gpgvtxedg1 48068
Description: The edges starting at an inside vertex 𝑋 in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.)
Hypotheses
Ref Expression
gpgedgvtx0.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgedgvtx0.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgedgvtx0.v 𝑉 = (Vtx‘𝐺)
gpgedgvtx0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpgvtxedg1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))

Proof of Theorem gpgvtxedg1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gpgusgra 48061 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
2 gpgedgvtx0.j . . . . . . 7 𝐽 = (1..^(⌈‘(𝑁 / 2)))
32eleq2i 2820 . . . . . 6 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
43anbi2i 623 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ↔ (𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))))
5 gpgedgvtx0.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
65eleq1i 2819 . . . . 5 (𝐺 ∈ USGraph ↔ (𝑁 gPetersenGr 𝐾) ∈ USGraph)
71, 4, 63imtr4i 292 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝐺 ∈ USGraph)
873ad2ant1 1133 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝐺 ∈ USGraph)
9 simp3 1138 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ {𝑋, 𝑌} ∈ 𝐸) → {𝑋, 𝑌} ∈ 𝐸)
10 gpgedgvtx0.e . . . 4 𝐸 = (Edg‘𝐺)
11 gpgedgvtx0.v . . . 4 𝑉 = (Vtx‘𝐺)
1210, 11usgrpredgv 29161 . . 3 ((𝐺 ∈ USGraph ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑋𝑉𝑌𝑉))
138, 9, 12syl2anc 584 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑋𝑉𝑌𝑉))
14 eqid 2729 . . . . . . . 8 (0..^𝑁) = (0..^𝑁)
1514, 2, 5, 10gpgedgel 48054 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ({𝑋, 𝑌} ∈ 𝐸 ↔ ∃𝑦 ∈ (0..^𝑁)({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ∨ {𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ∨ {𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩})))
16153ad2ant1 1133 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) → ({𝑋, 𝑌} ∈ 𝐸 ↔ ∃𝑦 ∈ (0..^𝑁)({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ∨ {𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ∨ {𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩})))
17 simp3 1138 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋𝑉𝑌𝑉))
1817adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (𝑋𝑉𝑌𝑉))
19 opex 5411 . . . . . . . . . . 11 ⟨0, 𝑦⟩ ∈ V
20 opex 5411 . . . . . . . . . . 11 ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ V
2119, 20pm3.2i 470 . . . . . . . . . 10 (⟨0, 𝑦⟩ ∈ V ∧ ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ V)
22 preq12bg 4807 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉) ∧ (⟨0, 𝑦⟩ ∈ V ∧ ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ V)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ↔ ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) ∨ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩))))
2318, 21, 22sylancl 586 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ↔ ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) ∨ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩))))
24 c0ex 11128 . . . . . . . . . . . . . . . . . 18 0 ∈ V
25 vex 3442 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
2624, 25op1std 7941 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨0, 𝑦⟩ → (1st𝑋) = 0)
2726eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨0, 𝑦⟩ → ((1st𝑋) = 1 ↔ 0 = 1))
28 eqcom 2736 . . . . . . . . . . . . . . . 16 (0 = 1 ↔ 1 = 0)
2927, 28bitrdi 287 . . . . . . . . . . . . . . 15 (𝑋 = ⟨0, 𝑦⟩ → ((1st𝑋) = 1 ↔ 1 = 0))
30 ax-1ne0 11097 . . . . . . . . . . . . . . . 16 1 ≠ 0
31 eqneqall 2936 . . . . . . . . . . . . . . . . 17 (1 = 0 → (1 ≠ 0 → (𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
3231com12 32 . . . . . . . . . . . . . . . 16 (1 ≠ 0 → (1 = 0 → (𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
3330, 32mp1i 13 . . . . . . . . . . . . . . 15 (𝑋 = ⟨0, 𝑦⟩ → (1 = 0 → (𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
3429, 33sylbid 240 . . . . . . . . . . . . . 14 (𝑋 = ⟨0, 𝑦⟩ → ((1st𝑋) = 1 → (𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
3534com12 32 . . . . . . . . . . . . 13 ((1st𝑋) = 1 → (𝑋 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
3635impd 410 . . . . . . . . . . . 12 ((1st𝑋) = 1 → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
37 ovex 7386 . . . . . . . . . . . . . . . . . 18 ((𝑦 + 1) mod 𝑁) ∈ V
3824, 37op1std 7941 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → (1st𝑋) = 0)
3938eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → ((1st𝑋) = 1 ↔ 0 = 1))
4039, 28bitrdi 287 . . . . . . . . . . . . . . 15 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → ((1st𝑋) = 1 ↔ 1 = 0))
41 eqneqall 2936 . . . . . . . . . . . . . . . . 17 (1 = 0 → (1 ≠ 0 → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
4241com12 32 . . . . . . . . . . . . . . . 16 (1 ≠ 0 → (1 = 0 → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
4330, 42mp1i 13 . . . . . . . . . . . . . . 15 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → (1 = 0 → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
4440, 43sylbid 240 . . . . . . . . . . . . . 14 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → ((1st𝑋) = 1 → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
4544com12 32 . . . . . . . . . . . . 13 ((1st𝑋) = 1 → (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
4645impd 410 . . . . . . . . . . . 12 ((1st𝑋) = 1 → ((𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
4736, 46jaod 859 . . . . . . . . . . 11 ((1st𝑋) = 1 → (((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) ∨ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
48473ad2ant2 1134 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) → (((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) ∨ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
4948adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) ∨ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
5023, 49sylbid 240 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
51 opex 5411 . . . . . . . . . . 11 ⟨1, 𝑦⟩ ∈ V
5219, 51pm3.2i 470 . . . . . . . . . 10 (⟨0, 𝑦⟩ ∈ V ∧ ⟨1, 𝑦⟩ ∈ V)
53 preq12bg 4807 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉) ∧ (⟨0, 𝑦⟩ ∈ V ∧ ⟨1, 𝑦⟩ ∈ V)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ↔ ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) ∨ (𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩))))
5418, 52, 53sylancl 586 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ↔ ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) ∨ (𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩))))
55 eqneqall 2936 . . . . . . . . . . . . . . . . 17 (1 = 0 → (1 ≠ 0 → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
5655com12 32 . . . . . . . . . . . . . . . 16 (1 ≠ 0 → (1 = 0 → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
5730, 56mp1i 13 . . . . . . . . . . . . . . 15 (𝑋 = ⟨0, 𝑦⟩ → (1 = 0 → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
5829, 57sylbid 240 . . . . . . . . . . . . . 14 (𝑋 = ⟨0, 𝑦⟩ → ((1st𝑋) = 1 → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
5958com12 32 . . . . . . . . . . . . 13 ((1st𝑋) = 1 → (𝑋 = ⟨0, 𝑦⟩ → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
60593ad2ant2 1134 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 = ⟨0, 𝑦⟩ → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
6160adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (𝑋 = ⟨0, 𝑦⟩ → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))))
6261impd 410 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
63 simpr 484 . . . . . . . . . . . . . 14 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → 𝑌 = ⟨0, 𝑦⟩)
64 1ex 11130 . . . . . . . . . . . . . . . . . 18 1 ∈ V
6564, 25op2ndd 7942 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨1, 𝑦⟩ → (2nd𝑋) = 𝑦)
6665eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨1, 𝑦⟩ → 𝑦 = (2nd𝑋))
6766adantr 480 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → 𝑦 = (2nd𝑋))
6867opeq2d 4834 . . . . . . . . . . . . . 14 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → ⟨0, 𝑦⟩ = ⟨0, (2nd𝑋)⟩)
6963, 68eqtrd 2764 . . . . . . . . . . . . 13 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → 𝑌 = ⟨0, (2nd𝑋)⟩)
7069adantl 481 . . . . . . . . . . . 12 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → 𝑌 = ⟨0, (2nd𝑋)⟩)
71703mix2d 1338 . . . . . . . . . . 11 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
7271ex 412 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
7362, 72jaod 859 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) ∨ (𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
7454, 73sylbid 240 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
75 opex 5411 . . . . . . . . . . 11 ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ V
7651, 75pm3.2i 470 . . . . . . . . . 10 (⟨1, 𝑦⟩ ∈ V ∧ ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ V)
77 preq12bg 4807 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉) ∧ (⟨1, 𝑦⟩ ∈ V ∧ ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ V)) → ({𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩} ↔ ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩))))
7818, 76, 77sylancl 586 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩} ↔ ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩))))
79 simpr 484 . . . . . . . . . . . . 13 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) → 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩)
8066oveq1d 7368 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨1, 𝑦⟩ → (𝑦 + 𝐾) = ((2nd𝑋) + 𝐾))
8180oveq1d 7368 . . . . . . . . . . . . . . 15 (𝑋 = ⟨1, 𝑦⟩ → ((𝑦 + 𝐾) mod 𝑁) = (((2nd𝑋) + 𝐾) mod 𝑁))
8281adantr 480 . . . . . . . . . . . . . 14 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) → ((𝑦 + 𝐾) mod 𝑁) = (((2nd𝑋) + 𝐾) mod 𝑁))
8382opeq2d 4834 . . . . . . . . . . . . 13 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) → ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩)
8479, 83eqtrd 2764 . . . . . . . . . . . 12 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) → 𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩)
85843mix1d 1337 . . . . . . . . . . 11 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
8685a1i 11 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
87 elfzoelz 13581 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℤ)
8887zred 12599 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℝ)
8988adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾𝐽𝑦 ∈ (0..^𝑁)) → 𝑦 ∈ ℝ)
90 elfzoelz 13581 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ)
9190zred 12599 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℝ)
923, 91sylbi 217 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾𝐽𝐾 ∈ ℝ)
9392adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾𝐽𝑦 ∈ (0..^𝑁)) → 𝐾 ∈ ℝ)
9489, 93readdcld 11163 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾𝐽𝑦 ∈ (0..^𝑁)) → (𝑦 + 𝐾) ∈ ℝ)
95 elfzo0 13622 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0..^𝑁) ↔ (𝑦 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑦 < 𝑁))
96 nnrp 12924 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
97963ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → 𝑁 ∈ ℝ+)
9895, 97sylbi 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^𝑁) → 𝑁 ∈ ℝ+)
9998adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾𝐽𝑦 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ+)
100 modsubmod 13855 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 + 𝐾) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁) = (((𝑦 + 𝐾) − 𝐾) mod 𝑁))
10194, 93, 99, 100syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((𝐾𝐽𝑦 ∈ (0..^𝑁)) → ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁) = (((𝑦 + 𝐾) − 𝐾) mod 𝑁))
10287zcnd 12600 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℂ)
103102adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾𝐽𝑦 ∈ (0..^𝑁)) → 𝑦 ∈ ℂ)
10493recnd 11162 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾𝐽𝑦 ∈ (0..^𝑁)) → 𝐾 ∈ ℂ)
105103, 104pncand 11495 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾𝐽𝑦 ∈ (0..^𝑁)) → ((𝑦 + 𝐾) − 𝐾) = 𝑦)
106105oveq1d 7368 . . . . . . . . . . . . . . . . . . . 20 ((𝐾𝐽𝑦 ∈ (0..^𝑁)) → (((𝑦 + 𝐾) − 𝐾) mod 𝑁) = (𝑦 mod 𝑁))
107 zmodidfzoimp 13824 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^𝑁) → (𝑦 mod 𝑁) = 𝑦)
108107adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐾𝐽𝑦 ∈ (0..^𝑁)) → (𝑦 mod 𝑁) = 𝑦)
109101, 106, 1083eqtrrd 2769 . . . . . . . . . . . . . . . . . . 19 ((𝐾𝐽𝑦 ∈ (0..^𝑁)) → 𝑦 = ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁))
110109ex 412 . . . . . . . . . . . . . . . . . 18 (𝐾𝐽 → (𝑦 ∈ (0..^𝑁) → 𝑦 = ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁)))
111110adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑦 ∈ (0..^𝑁) → 𝑦 = ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁)))
1121113ad2ant1 1133 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) → (𝑦 ∈ (0..^𝑁) → 𝑦 = ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁)))
113112imp 406 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → 𝑦 = ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁))
114113adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → 𝑦 = ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁))
115114opeq2d 4834 . . . . . . . . . . . . 13 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → ⟨1, 𝑦⟩ = ⟨1, ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁)⟩)
116 simpr 484 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → 𝑌 = ⟨1, 𝑦⟩)
117 ovex 7386 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 𝐾) mod 𝑁) ∈ V
11864, 117op2ndd 7942 . . . . . . . . . . . . . . . . . . 19 (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (2nd𝑋) = ((𝑦 + 𝐾) mod 𝑁))
119118oveq1d 7368 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → ((2nd𝑋) − 𝐾) = (((𝑦 + 𝐾) mod 𝑁) − 𝐾))
120119oveq1d 7368 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (((2nd𝑋) − 𝐾) mod 𝑁) = ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁))
121120opeq2d 4834 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ = ⟨1, ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁)⟩)
122121adantr 480 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ = ⟨1, ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁)⟩)
123116, 122eqeq12d 2745 . . . . . . . . . . . . . 14 ((𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → (𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ↔ ⟨1, 𝑦⟩ = ⟨1, ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁)⟩))
124123adantl 481 . . . . . . . . . . . . 13 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → (𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ↔ ⟨1, 𝑦⟩ = ⟨1, ((((𝑦 + 𝐾) mod 𝑁) − 𝐾) mod 𝑁)⟩))
125115, 124mpbird 257 . . . . . . . . . . . 12 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)
1261253mix3d 1339 . . . . . . . . . . 11 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
127126ex 412 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
12886, 127jaod 859 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
12978, 128sylbid 240 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩} → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
13050, 74, 1293jaod 1431 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ∨ {𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ∨ {𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩}) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
131130rexlimdva 3130 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) → (∃𝑦 ∈ (0..^𝑁)({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ∨ {𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ∨ {𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩}) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
13216, 131sylbid 240 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ (𝑋𝑉𝑌𝑉)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
1331323exp 1119 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ((1st𝑋) = 1 → ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))))
134133com34 91 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ((1st𝑋) = 1 → ({𝑋, 𝑌} ∈ 𝐸 → ((𝑋𝑉𝑌𝑉) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))))
1351343imp 1110 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ {𝑋, 𝑌} ∈ 𝐸) → ((𝑋𝑉𝑌𝑉) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
13613, 135mpd 15 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑌 = ⟨0, (2nd𝑋)⟩ ∨ 𝑌 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3438  {cpr 4581  cop 4585   class class class wbr 5095  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cmin 11366   / cdiv 11796  cn 12147  2c2 12202  3c3 12203  0cn0 12403  cuz 12754  +crp 12912  ..^cfzo 13576  cceil 13714   mod cmo 13792  Vtxcvtx 28960  Edgcedg 29011  USGraphcusgr 29113   gPetersenGr cgpg 48044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-fl 13715  df-ceil 13716  df-mod 13793  df-hash 14257  df-dvds 16183  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-edgf 28953  df-vtx 28962  df-iedg 28963  df-edg 29012  df-umgr 29047  df-usgr 29115  df-gpg 48045
This theorem is referenced by:  gpgedg2iv  48071  gpgnbgrvtx1  48079  pgnioedg1  48112  pgnioedg2  48113  pgnioedg3  48114  pgnioedg4  48115  pgnioedg5  48116  pgnbgreunbgrlem5lem1  48124  pgnbgreunbgrlem5lem2  48125
  Copyright terms: Public domain W3C validator