Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3nbgrvtx1 Structured version   Visualization version   GIF version

Theorem gpg3nbgrvtx1 48082
Description: In a generalized Petersen graph 𝐺, every inside vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) (Proof shortened by AV, 22-Nov-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpg3nbgrvtx1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘𝑈) = 3)

Proof of Theorem gpg3nbgrvtx1
StepHypRef Expression
1 gpgnbgr.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
2 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
3 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
4 gpgnbgr.u . . . 4 𝑈 = (𝐺 NeighbVtx 𝑋)
51, 2, 3, 4gpgnbgrvtx1 48079 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑈 = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
65fveq2d 6830 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘𝑈) = (♯‘{⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}))
7 ax-1ne0 11097 . . . . . . 7 1 ≠ 0
87a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 1 ≠ 0)
98orcd 873 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (1 ≠ 0 ∨ (((2nd𝑋) + 𝐾) mod 𝑁) ≠ (2nd𝑋)))
10 1ex 11130 . . . . . 6 1 ∈ V
11 ovex 7386 . . . . . 6 (((2nd𝑋) + 𝐾) mod 𝑁) ∈ V
1210, 11opthne 5429 . . . . 5 (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ≠ ⟨0, (2nd𝑋)⟩ ↔ (1 ≠ 0 ∨ (((2nd𝑋) + 𝐾) mod 𝑁) ≠ (2nd𝑋)))
139, 12sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ≠ ⟨0, (2nd𝑋)⟩)
14 0ne1 12218 . . . . . . 7 0 ≠ 1
1514a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 0 ≠ 1)
1615orcd 873 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (0 ≠ 1 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 𝐾) mod 𝑁)))
17 c0ex 11128 . . . . . 6 0 ∈ V
18 fvex 6839 . . . . . 6 (2nd𝑋) ∈ V
1917, 18opthne 5429 . . . . 5 (⟨0, (2nd𝑋)⟩ ≠ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ↔ (0 ≠ 1 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 𝐾) mod 𝑁)))
2016, 19sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ⟨0, (2nd𝑋)⟩ ≠ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)
21 simpll 766 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑁 ∈ (ℤ‘3))
22 eqid 2729 . . . . . . . . 9 (0..^𝑁) = (0..^𝑁)
2322, 1, 2, 3gpgvtxel2 48052 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (2nd𝑋) ∈ (0..^𝑁))
2423adantrr 717 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (2nd𝑋) ∈ (0..^𝑁))
25 simplr 768 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝐾𝐽)
261, 22modmknepk 47366 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (2nd𝑋) ∈ (0..^𝑁) ∧ 𝐾𝐽) → (((2nd𝑋) − 𝐾) mod 𝑁) ≠ (((2nd𝑋) + 𝐾) mod 𝑁))
2721, 24, 25, 26syl3anc 1373 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (((2nd𝑋) − 𝐾) mod 𝑁) ≠ (((2nd𝑋) + 𝐾) mod 𝑁))
2827olcd 874 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (1 ≠ 1 ∨ (((2nd𝑋) − 𝐾) mod 𝑁) ≠ (((2nd𝑋) + 𝐾) mod 𝑁)))
29 ovex 7386 . . . . . 6 (((2nd𝑋) − 𝐾) mod 𝑁) ∈ V
3010, 29opthne 5429 . . . . 5 (⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ↔ (1 ≠ 1 ∨ (((2nd𝑋) − 𝐾) mod 𝑁) ≠ (((2nd𝑋) + 𝐾) mod 𝑁)))
3128, 30sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩)
3213, 20, 313jca 1128 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ≠ ⟨0, (2nd𝑋)⟩ ∧ ⟨0, (2nd𝑋)⟩ ≠ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩))
33 opex 5411 . . . 4 ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ V
34 opex 5411 . . . 4 ⟨0, (2nd𝑋)⟩ ∈ V
35 opex 5411 . . . 4 ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ V
36 hashtpg 14411 . . . 4 ((⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ V ∧ ⟨0, (2nd𝑋)⟩ ∈ V ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ V) → ((⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ≠ ⟨0, (2nd𝑋)⟩ ∧ ⟨0, (2nd𝑋)⟩ ≠ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩) ↔ (♯‘{⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}) = 3))
3733, 34, 35, 36mp3an 1463 . . 3 ((⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ≠ ⟨0, (2nd𝑋)⟩ ∧ ⟨0, (2nd𝑋)⟩ ≠ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩) ↔ (♯‘{⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}) = 3)
3832, 37sylib 218 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘{⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}) = 3)
396, 38eqtrd 2764 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘𝑈) = 3)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  {ctp 4583  cop 4585  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  0cc0 11028  1c1 11029   + caddc 11031  cmin 11366   / cdiv 11796  2c2 12202  3c3 12203  cuz 12754  ..^cfzo 13576  cceil 13714   mod cmo 13792  chash 14256  Vtxcvtx 28960   NeighbVtx cnbgr 29296   gPetersenGr cgpg 48044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-rp 12913  df-ico 13273  df-fz 13430  df-fzo 13577  df-fl 13715  df-ceil 13716  df-mod 13793  df-hash 14257  df-dvds 16183  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-edgf 28953  df-vtx 28962  df-iedg 28963  df-edg 29012  df-upgr 29046  df-umgr 29047  df-usgr 29115  df-nbgr 29297  df-gpg 48045
This theorem is referenced by:  gpgcubic  48083  gpg5nbgr3star  48085
  Copyright terms: Public domain W3C validator