Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3nbgrvtx1 Structured version   Visualization version   GIF version

Theorem gpg3nbgrvtx1 48007
Description: In a generalized Petersen graph 𝐺, every inside vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpg3nbgrvtx1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘𝑈) = 3)

Proof of Theorem gpg3nbgrvtx1
StepHypRef Expression
1 gpgnbgr.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
2 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
3 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
4 gpgnbgr.u . . . 4 𝑈 = (𝐺 NeighbVtx 𝑋)
51, 2, 3, 4gpgnbgrvtx1 48004 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑈 = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
65fveq2d 6890 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘𝑈) = (♯‘{⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}))
7 ax-1ne0 11206 . . . . . . 7 1 ≠ 0
87a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 1 ≠ 0)
98orcd 873 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (1 ≠ 0 ∨ (((2nd𝑋) + 𝐾) mod 𝑁) ≠ (2nd𝑋)))
10 1ex 11239 . . . . . 6 1 ∈ V
11 ovex 7446 . . . . . 6 (((2nd𝑋) + 𝐾) mod 𝑁) ∈ V
1210, 11opthne 5467 . . . . 5 (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ≠ ⟨0, (2nd𝑋)⟩ ↔ (1 ≠ 0 ∨ (((2nd𝑋) + 𝐾) mod 𝑁) ≠ (2nd𝑋)))
139, 12sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ≠ ⟨0, (2nd𝑋)⟩)
14 0ne1 12319 . . . . . . 7 0 ≠ 1
1514a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 0 ≠ 1)
1615orcd 873 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (0 ≠ 1 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 𝐾) mod 𝑁)))
17 c0ex 11237 . . . . . 6 0 ∈ V
18 fvex 6899 . . . . . 6 (2nd𝑋) ∈ V
1917, 18opthne 5467 . . . . 5 (⟨0, (2nd𝑋)⟩ ≠ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ↔ (0 ≠ 1 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 𝐾) mod 𝑁)))
2016, 19sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ⟨0, (2nd𝑋)⟩ ≠ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)
21 simpll 766 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑁 ∈ (ℤ‘3))
221eleq2i 2825 . . . . . . . . . 10 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
2322biimpi 216 . . . . . . . . 9 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
2423ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
25 eqid 2734 . . . . . . . . . 10 (0..^𝑁) = (0..^𝑁)
2625, 1, 2, 3gpgvtxel2 47979 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (2nd𝑋) ∈ (0..^𝑁))
2726adantrr 717 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (2nd𝑋) ∈ (0..^𝑁))
28 gpg3nbgrvtxlem 47996 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ (2nd𝑋) ∈ (0..^𝑁)) → (((2nd𝑋) + 𝐾) mod 𝑁) ≠ (((2nd𝑋) − 𝐾) mod 𝑁))
2921, 24, 27, 28syl3anc 1372 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (((2nd𝑋) + 𝐾) mod 𝑁) ≠ (((2nd𝑋) − 𝐾) mod 𝑁))
3029necomd 2986 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (((2nd𝑋) − 𝐾) mod 𝑁) ≠ (((2nd𝑋) + 𝐾) mod 𝑁))
3130olcd 874 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (1 ≠ 1 ∨ (((2nd𝑋) − 𝐾) mod 𝑁) ≠ (((2nd𝑋) + 𝐾) mod 𝑁)))
32 ovex 7446 . . . . . 6 (((2nd𝑋) − 𝐾) mod 𝑁) ∈ V
3310, 32opthne 5467 . . . . 5 (⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ↔ (1 ≠ 1 ∨ (((2nd𝑋) − 𝐾) mod 𝑁) ≠ (((2nd𝑋) + 𝐾) mod 𝑁)))
3431, 33sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩)
3513, 20, 343jca 1128 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ≠ ⟨0, (2nd𝑋)⟩ ∧ ⟨0, (2nd𝑋)⟩ ≠ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩))
36 opex 5449 . . . 4 ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ V
37 opex 5449 . . . 4 ⟨0, (2nd𝑋)⟩ ∈ V
38 opex 5449 . . . 4 ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ V
39 hashtpg 14507 . . . 4 ((⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ V ∧ ⟨0, (2nd𝑋)⟩ ∈ V ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ V) → ((⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ≠ ⟨0, (2nd𝑋)⟩ ∧ ⟨0, (2nd𝑋)⟩ ≠ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩) ↔ (♯‘{⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}) = 3))
4036, 37, 38, 39mp3an 1462 . . 3 ((⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ≠ ⟨0, (2nd𝑋)⟩ ∧ ⟨0, (2nd𝑋)⟩ ≠ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩) ↔ (♯‘{⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}) = 3)
4135, 40sylib 218 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘{⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}) = 3)
426, 41eqtrd 2769 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘𝑈) = 3)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2931  Vcvv 3463  {ctp 4610  cop 4612  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995  0cc0 11137  1c1 11138   + caddc 11140  cmin 11474   / cdiv 11902  2c2 12303  3c3 12304  cuz 12860  ..^cfzo 13676  cceil 13813   mod cmo 13891  chash 14352  Vtxcvtx 28942   NeighbVtx cnbgr 29278   gPetersenGr cgpg 47972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-ico 13375  df-fz 13530  df-fzo 13677  df-fl 13814  df-ceil 13815  df-mod 13892  df-hash 14353  df-dvds 16274  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-edgf 28935  df-vtx 28944  df-iedg 28945  df-edg 28994  df-upgr 29028  df-umgr 29029  df-usgr 29097  df-nbgr 29279  df-gpg 47973
This theorem is referenced by:  gpgcubic  48008  gpg5nbgr3star  48010
  Copyright terms: Public domain W3C validator