Proof of Theorem gpg3nbgrvtx1
Step | Hyp | Ref
| Expression |
1 | | gpgnbgr.j |
. . . 4
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
2 | | gpgnbgr.g |
. . . 4
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
3 | | gpgnbgr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
4 | | gpgnbgr.u |
. . . 4
⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
5 | 1, 2, 3, 4 | gpgnbgrvtx1 47918 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝑈 = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}) |
6 | 5 | fveq2d 6927 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) →
(♯‘𝑈) =
(♯‘{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉})) |
7 | | ax-1ne0 11256 |
. . . . . . 7
⊢ 1 ≠
0 |
8 | 7 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 1 ≠
0) |
9 | 8 | orcd 872 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (1 ≠ 0 ∨
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁) ≠ (2nd ‘𝑋))) |
10 | | 1ex 11289 |
. . . . . 6
⊢ 1 ∈
V |
11 | | ovex 7484 |
. . . . . 6
⊢
(((2nd ‘𝑋) + 𝐾) mod 𝑁) ∈ V |
12 | 10, 11 | opthne 5503 |
. . . . 5
⊢ (〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉 ≠ 〈0, (2nd
‘𝑋)〉 ↔ (1
≠ 0 ∨ (((2nd ‘𝑋) + 𝐾) mod 𝑁) ≠ (2nd ‘𝑋))) |
13 | 9, 12 | sylibr 234 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉 ≠ 〈0, (2nd
‘𝑋)〉) |
14 | | 0ne1 12369 |
. . . . . . 7
⊢ 0 ≠
1 |
15 | 14 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 0 ≠
1) |
16 | 15 | orcd 872 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (0 ≠ 1 ∨
(2nd ‘𝑋)
≠ (((2nd ‘𝑋) − 𝐾) mod 𝑁))) |
17 | | c0ex 11287 |
. . . . . 6
⊢ 0 ∈
V |
18 | | fvex 6936 |
. . . . . 6
⊢
(2nd ‘𝑋) ∈ V |
19 | 17, 18 | opthne 5503 |
. . . . 5
⊢ (〈0,
(2nd ‘𝑋)〉 ≠ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ↔ (0 ≠ 1 ∨
(2nd ‘𝑋)
≠ (((2nd ‘𝑋) − 𝐾) mod 𝑁))) |
20 | 16, 19 | sylibr 234 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 〈0,
(2nd ‘𝑋)〉 ≠ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉) |
21 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝑁 ∈
(ℤ≥‘3)) |
22 | 1 | eleq2i 2836 |
. . . . . . . . . 10
⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
23 | 22 | biimpi 216 |
. . . . . . . . 9
⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
24 | 23 | ad2antlr 726 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
25 | | eqid 2740 |
. . . . . . . . . 10
⊢
(0..^𝑁) = (0..^𝑁) |
26 | 25, 1, 2, 3 | gpgvtxel2 47896 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (2nd ‘𝑋) ∈ (0..^𝑁)) |
27 | 26 | adantrr 716 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (2nd
‘𝑋) ∈ (0..^𝑁)) |
28 | | gpg3nbgrvtxlem 47910 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ (2nd
‘𝑋) ∈ (0..^𝑁)) → (((2nd
‘𝑋) + 𝐾) mod 𝑁) ≠ (((2nd ‘𝑋) − 𝐾) mod 𝑁)) |
29 | 21, 24, 27, 28 | syl3anc 1371 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (((2nd
‘𝑋) + 𝐾) mod 𝑁) ≠ (((2nd ‘𝑋) − 𝐾) mod 𝑁)) |
30 | 29 | necomd 3002 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (((2nd
‘𝑋) − 𝐾) mod 𝑁) ≠ (((2nd ‘𝑋) + 𝐾) mod 𝑁)) |
31 | 30 | olcd 873 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (1 ≠ 1 ∨
(((2nd ‘𝑋)
− 𝐾) mod 𝑁) ≠ (((2nd
‘𝑋) + 𝐾) mod 𝑁))) |
32 | | ovex 7484 |
. . . . . 6
⊢
(((2nd ‘𝑋) − 𝐾) mod 𝑁) ∈ V |
33 | 10, 32 | opthne 5503 |
. . . . 5
⊢ (〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 ≠ 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉 ↔ (1 ≠ 1 ∨
(((2nd ‘𝑋)
− 𝐾) mod 𝑁) ≠ (((2nd
‘𝑋) + 𝐾) mod 𝑁))) |
34 | 31, 33 | sylibr 234 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 ≠ 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉) |
35 | 13, 20, 34 | 3jca 1128 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉 ≠ 〈0, (2nd
‘𝑋)〉 ∧
〈0, (2nd ‘𝑋)〉 ≠ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∧ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ≠ 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉)) |
36 | | opex 5485 |
. . . 4
⊢ 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉 ∈ V |
37 | | opex 5485 |
. . . 4
⊢ 〈0,
(2nd ‘𝑋)〉 ∈ V |
38 | | opex 5485 |
. . . 4
⊢ 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 ∈
V |
39 | | hashtpg 14551 |
. . . 4
⊢
((〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∈ V ∧ 〈0,
(2nd ‘𝑋)〉 ∈ V ∧ 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 ∈ V) →
((〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ≠ 〈0, (2nd
‘𝑋)〉 ∧
〈0, (2nd ‘𝑋)〉 ≠ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∧ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ≠ 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉) ↔ (♯‘{〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}) = 3)) |
40 | 36, 37, 38, 39 | mp3an 1461 |
. . 3
⊢
((〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ≠ 〈0, (2nd
‘𝑋)〉 ∧
〈0, (2nd ‘𝑋)〉 ≠ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∧ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ≠ 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉) ↔ (♯‘{〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}) = 3) |
41 | 35, 40 | sylib 218 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) →
(♯‘{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}) = 3) |
42 | 6, 41 | eqtrd 2780 |
1
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) →
(♯‘𝑈) =
3) |