| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz2 | Structured version Visualization version GIF version | ||
| Description: Special case of hashnzfz 44302: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| hashnzfz2.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
| hashnzfz2.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| Ref | Expression |
|---|---|
| hashnzfz2 | ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12235 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 2 | uznnssnn 12830 | . . . . 5 ⊢ (2 ∈ ℕ → (ℤ≥‘2) ⊆ ℕ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ℤ≥‘2) ⊆ ℕ |
| 4 | hashnzfz2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
| 5 | 3, 4 | sselid 3941 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | 2z 12541 | . . . 4 ⊢ 2 ∈ ℤ | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
| 8 | hashnzfz2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 9 | nnuz 12812 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 10 | 2m1e1 12283 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 11 | 10 | fveq2i 6843 | . . . . 5 ⊢ (ℤ≥‘(2 − 1)) = (ℤ≥‘1) |
| 12 | 9, 11 | eqtr4i 2755 | . . . 4 ⊢ ℕ = (ℤ≥‘(2 − 1)) |
| 13 | 8, 12 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(2 − 1))) |
| 14 | 5, 7, 13 | hashnzfz 44302 | . 2 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁)))) |
| 15 | 10 | oveq1i 7379 | . . . . 5 ⊢ ((2 − 1) / 𝑁) = (1 / 𝑁) |
| 16 | 15 | fveq2i 6843 | . . . 4 ⊢ (⌊‘((2 − 1) / 𝑁)) = (⌊‘(1 / 𝑁)) |
| 17 | 0red 11153 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 18 | 5 | nnrecred 12213 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
| 19 | 5 | nnred 12177 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 20 | 5 | nngt0d 12211 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 21 | 19, 20 | recgt0d 12093 | . . . . . 6 ⊢ (𝜑 → 0 < (1 / 𝑁)) |
| 22 | 17, 18, 21 | ltled 11298 | . . . . 5 ⊢ (𝜑 → 0 ≤ (1 / 𝑁)) |
| 23 | eluzle 12782 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
| 24 | 4, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≤ 𝑁) |
| 25 | 5 | nnzd 12532 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 26 | zlem1lt 12561 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) | |
| 27 | 6, 25, 26 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) |
| 28 | 24, 27 | mpbid 232 | . . . . . . . 8 ⊢ (𝜑 → (2 − 1) < 𝑁) |
| 29 | 10, 28 | eqbrtrrid 5138 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝑁) |
| 30 | 5 | nnrpd 12969 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ+) |
| 31 | 30 | recgt1d 12985 | . . . . . . 7 ⊢ (𝜑 → (1 < 𝑁 ↔ (1 / 𝑁) < 1)) |
| 32 | 29, 31 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) < 1) |
| 33 | 0p1e1 12279 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 34 | 32, 33 | breqtrrdi 5144 | . . . . 5 ⊢ (𝜑 → (1 / 𝑁) < (0 + 1)) |
| 35 | 0z 12516 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 36 | flbi 13754 | . . . . . 6 ⊢ (((1 / 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) | |
| 37 | 18, 35, 36 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) |
| 38 | 22, 34, 37 | mpbir2and 713 | . . . 4 ⊢ (𝜑 → (⌊‘(1 / 𝑁)) = 0) |
| 39 | 16, 38 | eqtrid 2776 | . . 3 ⊢ (𝜑 → (⌊‘((2 − 1) / 𝑁)) = 0) |
| 40 | 39 | oveq2d 7385 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − 0)) |
| 41 | 8 | nnred 12177 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 42 | 41, 5 | nndivred 12216 | . . . . 5 ⊢ (𝜑 → (𝐾 / 𝑁) ∈ ℝ) |
| 43 | 42 | flcld 13736 | . . . 4 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℤ) |
| 44 | 43 | zcnd 12615 | . . 3 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℂ) |
| 45 | 44 | subid1d 11498 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − 0) = (⌊‘(𝐾 / 𝑁))) |
| 46 | 14, 40, 45 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 {csn 4585 class class class wbr 5102 “ cima 5634 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 ≤ cle 11185 − cmin 11381 / cdiv 11811 ℕcn 12162 2c2 12217 ℤcz 12505 ℤ≥cuz 12769 ...cfz 13444 ⌊cfl 13728 ♯chash 14271 ∥ cdvds 16198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fl 13730 df-hash 14272 df-dvds 16199 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |