Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz2 | Structured version Visualization version GIF version |
Description: Special case of hashnzfz 41897: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
hashnzfz2.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
hashnzfz2.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
Ref | Expression |
---|---|
hashnzfz2 | ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12034 | . . . . 5 ⊢ 2 ∈ ℕ | |
2 | uznnssnn 12623 | . . . . 5 ⊢ (2 ∈ ℕ → (ℤ≥‘2) ⊆ ℕ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ℤ≥‘2) ⊆ ℕ |
4 | hashnzfz2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
5 | 3, 4 | sselid 3919 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | 2z 12340 | . . . 4 ⊢ 2 ∈ ℤ | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
8 | hashnzfz2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
9 | nnuz 12609 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
10 | 2m1e1 12087 | . . . . . 6 ⊢ (2 − 1) = 1 | |
11 | 10 | fveq2i 6770 | . . . . 5 ⊢ (ℤ≥‘(2 − 1)) = (ℤ≥‘1) |
12 | 9, 11 | eqtr4i 2769 | . . . 4 ⊢ ℕ = (ℤ≥‘(2 − 1)) |
13 | 8, 12 | eleqtrdi 2849 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(2 − 1))) |
14 | 5, 7, 13 | hashnzfz 41897 | . 2 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁)))) |
15 | 10 | oveq1i 7278 | . . . . 5 ⊢ ((2 − 1) / 𝑁) = (1 / 𝑁) |
16 | 15 | fveq2i 6770 | . . . 4 ⊢ (⌊‘((2 − 1) / 𝑁)) = (⌊‘(1 / 𝑁)) |
17 | 0red 10966 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
18 | 5 | nnrecred 12012 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
19 | 5 | nnred 11976 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
20 | 5 | nngt0d 12010 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
21 | 19, 20 | recgt0d 11897 | . . . . . 6 ⊢ (𝜑 → 0 < (1 / 𝑁)) |
22 | 17, 18, 21 | ltled 11111 | . . . . 5 ⊢ (𝜑 → 0 ≤ (1 / 𝑁)) |
23 | eluzle 12583 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
24 | 4, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≤ 𝑁) |
25 | 5 | nnzd 12413 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
26 | zlem1lt 12360 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) | |
27 | 6, 25, 26 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) |
28 | 24, 27 | mpbid 231 | . . . . . . . 8 ⊢ (𝜑 → (2 − 1) < 𝑁) |
29 | 10, 28 | eqbrtrrid 5110 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝑁) |
30 | 5 | nnrpd 12758 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ+) |
31 | 30 | recgt1d 12774 | . . . . . . 7 ⊢ (𝜑 → (1 < 𝑁 ↔ (1 / 𝑁) < 1)) |
32 | 29, 31 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) < 1) |
33 | 0p1e1 12083 | . . . . . 6 ⊢ (0 + 1) = 1 | |
34 | 32, 33 | breqtrrdi 5116 | . . . . 5 ⊢ (𝜑 → (1 / 𝑁) < (0 + 1)) |
35 | 0z 12318 | . . . . . 6 ⊢ 0 ∈ ℤ | |
36 | flbi 13524 | . . . . . 6 ⊢ (((1 / 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) | |
37 | 18, 35, 36 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) |
38 | 22, 34, 37 | mpbir2and 710 | . . . 4 ⊢ (𝜑 → (⌊‘(1 / 𝑁)) = 0) |
39 | 16, 38 | eqtrid 2790 | . . 3 ⊢ (𝜑 → (⌊‘((2 − 1) / 𝑁)) = 0) |
40 | 39 | oveq2d 7284 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − 0)) |
41 | 8 | nnred 11976 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
42 | 41, 5 | nndivred 12015 | . . . . 5 ⊢ (𝜑 → (𝐾 / 𝑁) ∈ ℝ) |
43 | 42 | flcld 13506 | . . . 4 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℤ) |
44 | 43 | zcnd 12415 | . . 3 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℂ) |
45 | 44 | subid1d 11309 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − 0) = (⌊‘(𝐾 / 𝑁))) |
46 | 14, 40, 45 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 {csn 4562 class class class wbr 5074 “ cima 5588 ‘cfv 6427 (class class class)co 7268 ℝcr 10858 0cc0 10859 1c1 10860 + caddc 10862 < clt 10997 ≤ cle 10998 − cmin 11193 / cdiv 11620 ℕcn 11961 2c2 12016 ℤcz 12307 ℤ≥cuz 12570 ...cfz 13227 ⌊cfl 13498 ♯chash 14032 ∥ cdvds 15951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-pre-sup 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-sup 9189 df-inf 9190 df-card 9685 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-nn 11962 df-2 12024 df-n0 12222 df-z 12308 df-uz 12571 df-rp 12719 df-fz 13228 df-fl 13500 df-hash 14033 df-dvds 15952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |