| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz2 | Structured version Visualization version GIF version | ||
| Description: Special case of hashnzfz 44344: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| hashnzfz2.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
| hashnzfz2.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| Ref | Expression |
|---|---|
| hashnzfz2 | ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12313 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 2 | uznnssnn 12911 | . . . . 5 ⊢ (2 ∈ ℕ → (ℤ≥‘2) ⊆ ℕ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ℤ≥‘2) ⊆ ℕ |
| 4 | hashnzfz2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
| 5 | 3, 4 | sselid 3956 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | 2z 12624 | . . . 4 ⊢ 2 ∈ ℤ | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
| 8 | hashnzfz2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 9 | nnuz 12895 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 10 | 2m1e1 12366 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 11 | 10 | fveq2i 6879 | . . . . 5 ⊢ (ℤ≥‘(2 − 1)) = (ℤ≥‘1) |
| 12 | 9, 11 | eqtr4i 2761 | . . . 4 ⊢ ℕ = (ℤ≥‘(2 − 1)) |
| 13 | 8, 12 | eleqtrdi 2844 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(2 − 1))) |
| 14 | 5, 7, 13 | hashnzfz 44344 | . 2 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁)))) |
| 15 | 10 | oveq1i 7415 | . . . . 5 ⊢ ((2 − 1) / 𝑁) = (1 / 𝑁) |
| 16 | 15 | fveq2i 6879 | . . . 4 ⊢ (⌊‘((2 − 1) / 𝑁)) = (⌊‘(1 / 𝑁)) |
| 17 | 0red 11238 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 18 | 5 | nnrecred 12291 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
| 19 | 5 | nnred 12255 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 20 | 5 | nngt0d 12289 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 21 | 19, 20 | recgt0d 12176 | . . . . . 6 ⊢ (𝜑 → 0 < (1 / 𝑁)) |
| 22 | 17, 18, 21 | ltled 11383 | . . . . 5 ⊢ (𝜑 → 0 ≤ (1 / 𝑁)) |
| 23 | eluzle 12865 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
| 24 | 4, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≤ 𝑁) |
| 25 | 5 | nnzd 12615 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 26 | zlem1lt 12644 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) | |
| 27 | 6, 25, 26 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) |
| 28 | 24, 27 | mpbid 232 | . . . . . . . 8 ⊢ (𝜑 → (2 − 1) < 𝑁) |
| 29 | 10, 28 | eqbrtrrid 5155 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝑁) |
| 30 | 5 | nnrpd 13049 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ+) |
| 31 | 30 | recgt1d 13065 | . . . . . . 7 ⊢ (𝜑 → (1 < 𝑁 ↔ (1 / 𝑁) < 1)) |
| 32 | 29, 31 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) < 1) |
| 33 | 0p1e1 12362 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 34 | 32, 33 | breqtrrdi 5161 | . . . . 5 ⊢ (𝜑 → (1 / 𝑁) < (0 + 1)) |
| 35 | 0z 12599 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 36 | flbi 13833 | . . . . . 6 ⊢ (((1 / 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) | |
| 37 | 18, 35, 36 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) |
| 38 | 22, 34, 37 | mpbir2and 713 | . . . 4 ⊢ (𝜑 → (⌊‘(1 / 𝑁)) = 0) |
| 39 | 16, 38 | eqtrid 2782 | . . 3 ⊢ (𝜑 → (⌊‘((2 − 1) / 𝑁)) = 0) |
| 40 | 39 | oveq2d 7421 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − 0)) |
| 41 | 8 | nnred 12255 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 42 | 41, 5 | nndivred 12294 | . . . . 5 ⊢ (𝜑 → (𝐾 / 𝑁) ∈ ℝ) |
| 43 | 42 | flcld 13815 | . . . 4 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℤ) |
| 44 | 43 | zcnd 12698 | . . 3 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℂ) |
| 45 | 44 | subid1d 11583 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − 0) = (⌊‘(𝐾 / 𝑁))) |
| 46 | 14, 40, 45 | 3eqtrd 2774 | 1 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 {csn 4601 class class class wbr 5119 “ cima 5657 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 < clt 11269 ≤ cle 11270 − cmin 11466 / cdiv 11894 ℕcn 12240 2c2 12295 ℤcz 12588 ℤ≥cuz 12852 ...cfz 13524 ⌊cfl 13807 ♯chash 14348 ∥ cdvds 16272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fl 13809 df-hash 14349 df-dvds 16273 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |