![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz2 | Structured version Visualization version GIF version |
Description: Special case of hashnzfz 44289: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
hashnzfz2.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
hashnzfz2.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
Ref | Expression |
---|---|
hashnzfz2 | ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12366 | . . . . 5 ⊢ 2 ∈ ℕ | |
2 | uznnssnn 12960 | . . . . 5 ⊢ (2 ∈ ℕ → (ℤ≥‘2) ⊆ ℕ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ℤ≥‘2) ⊆ ℕ |
4 | hashnzfz2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
5 | 3, 4 | sselid 4006 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | 2z 12675 | . . . 4 ⊢ 2 ∈ ℤ | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
8 | hashnzfz2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
9 | nnuz 12946 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
10 | 2m1e1 12419 | . . . . . 6 ⊢ (2 − 1) = 1 | |
11 | 10 | fveq2i 6923 | . . . . 5 ⊢ (ℤ≥‘(2 − 1)) = (ℤ≥‘1) |
12 | 9, 11 | eqtr4i 2771 | . . . 4 ⊢ ℕ = (ℤ≥‘(2 − 1)) |
13 | 8, 12 | eleqtrdi 2854 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(2 − 1))) |
14 | 5, 7, 13 | hashnzfz 44289 | . 2 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁)))) |
15 | 10 | oveq1i 7458 | . . . . 5 ⊢ ((2 − 1) / 𝑁) = (1 / 𝑁) |
16 | 15 | fveq2i 6923 | . . . 4 ⊢ (⌊‘((2 − 1) / 𝑁)) = (⌊‘(1 / 𝑁)) |
17 | 0red 11293 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
18 | 5 | nnrecred 12344 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
19 | 5 | nnred 12308 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
20 | 5 | nngt0d 12342 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
21 | 19, 20 | recgt0d 12229 | . . . . . 6 ⊢ (𝜑 → 0 < (1 / 𝑁)) |
22 | 17, 18, 21 | ltled 11438 | . . . . 5 ⊢ (𝜑 → 0 ≤ (1 / 𝑁)) |
23 | eluzle 12916 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
24 | 4, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≤ 𝑁) |
25 | 5 | nnzd 12666 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
26 | zlem1lt 12695 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) | |
27 | 6, 25, 26 | sylancr 586 | . . . . . . . . 9 ⊢ (𝜑 → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) |
28 | 24, 27 | mpbid 232 | . . . . . . . 8 ⊢ (𝜑 → (2 − 1) < 𝑁) |
29 | 10, 28 | eqbrtrrid 5202 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝑁) |
30 | 5 | nnrpd 13097 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ+) |
31 | 30 | recgt1d 13113 | . . . . . . 7 ⊢ (𝜑 → (1 < 𝑁 ↔ (1 / 𝑁) < 1)) |
32 | 29, 31 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) < 1) |
33 | 0p1e1 12415 | . . . . . 6 ⊢ (0 + 1) = 1 | |
34 | 32, 33 | breqtrrdi 5208 | . . . . 5 ⊢ (𝜑 → (1 / 𝑁) < (0 + 1)) |
35 | 0z 12650 | . . . . . 6 ⊢ 0 ∈ ℤ | |
36 | flbi 13867 | . . . . . 6 ⊢ (((1 / 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) | |
37 | 18, 35, 36 | sylancl 585 | . . . . 5 ⊢ (𝜑 → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) |
38 | 22, 34, 37 | mpbir2and 712 | . . . 4 ⊢ (𝜑 → (⌊‘(1 / 𝑁)) = 0) |
39 | 16, 38 | eqtrid 2792 | . . 3 ⊢ (𝜑 → (⌊‘((2 − 1) / 𝑁)) = 0) |
40 | 39 | oveq2d 7464 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − 0)) |
41 | 8 | nnred 12308 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
42 | 41, 5 | nndivred 12347 | . . . . 5 ⊢ (𝜑 → (𝐾 / 𝑁) ∈ ℝ) |
43 | 42 | flcld 13849 | . . . 4 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℤ) |
44 | 43 | zcnd 12748 | . . 3 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℂ) |
45 | 44 | subid1d 11636 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − 0) = (⌊‘(𝐾 / 𝑁))) |
46 | 14, 40, 45 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 {csn 4648 class class class wbr 5166 “ cima 5703 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 − cmin 11520 / cdiv 11947 ℕcn 12293 2c2 12348 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 ⌊cfl 13841 ♯chash 14379 ∥ cdvds 16302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fl 13843 df-hash 14380 df-dvds 16303 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |