![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz2 | Structured version Visualization version GIF version |
Description: Special case of hashnzfz 42688: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
hashnzfz2.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
hashnzfz2.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
Ref | Expression |
---|---|
hashnzfz2 | ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12231 | . . . . 5 ⊢ 2 ∈ ℕ | |
2 | uznnssnn 12825 | . . . . 5 ⊢ (2 ∈ ℕ → (ℤ≥‘2) ⊆ ℕ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ℤ≥‘2) ⊆ ℕ |
4 | hashnzfz2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
5 | 3, 4 | sselid 3943 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | 2z 12540 | . . . 4 ⊢ 2 ∈ ℤ | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
8 | hashnzfz2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
9 | nnuz 12811 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
10 | 2m1e1 12284 | . . . . . 6 ⊢ (2 − 1) = 1 | |
11 | 10 | fveq2i 6846 | . . . . 5 ⊢ (ℤ≥‘(2 − 1)) = (ℤ≥‘1) |
12 | 9, 11 | eqtr4i 2764 | . . . 4 ⊢ ℕ = (ℤ≥‘(2 − 1)) |
13 | 8, 12 | eleqtrdi 2844 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(2 − 1))) |
14 | 5, 7, 13 | hashnzfz 42688 | . 2 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁)))) |
15 | 10 | oveq1i 7368 | . . . . 5 ⊢ ((2 − 1) / 𝑁) = (1 / 𝑁) |
16 | 15 | fveq2i 6846 | . . . 4 ⊢ (⌊‘((2 − 1) / 𝑁)) = (⌊‘(1 / 𝑁)) |
17 | 0red 11163 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
18 | 5 | nnrecred 12209 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
19 | 5 | nnred 12173 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
20 | 5 | nngt0d 12207 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
21 | 19, 20 | recgt0d 12094 | . . . . . 6 ⊢ (𝜑 → 0 < (1 / 𝑁)) |
22 | 17, 18, 21 | ltled 11308 | . . . . 5 ⊢ (𝜑 → 0 ≤ (1 / 𝑁)) |
23 | eluzle 12781 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
24 | 4, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≤ 𝑁) |
25 | 5 | nnzd 12531 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
26 | zlem1lt 12560 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) | |
27 | 6, 25, 26 | sylancr 588 | . . . . . . . . 9 ⊢ (𝜑 → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) |
28 | 24, 27 | mpbid 231 | . . . . . . . 8 ⊢ (𝜑 → (2 − 1) < 𝑁) |
29 | 10, 28 | eqbrtrrid 5142 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝑁) |
30 | 5 | nnrpd 12960 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ+) |
31 | 30 | recgt1d 12976 | . . . . . . 7 ⊢ (𝜑 → (1 < 𝑁 ↔ (1 / 𝑁) < 1)) |
32 | 29, 31 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) < 1) |
33 | 0p1e1 12280 | . . . . . 6 ⊢ (0 + 1) = 1 | |
34 | 32, 33 | breqtrrdi 5148 | . . . . 5 ⊢ (𝜑 → (1 / 𝑁) < (0 + 1)) |
35 | 0z 12515 | . . . . . 6 ⊢ 0 ∈ ℤ | |
36 | flbi 13727 | . . . . . 6 ⊢ (((1 / 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) | |
37 | 18, 35, 36 | sylancl 587 | . . . . 5 ⊢ (𝜑 → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) |
38 | 22, 34, 37 | mpbir2and 712 | . . . 4 ⊢ (𝜑 → (⌊‘(1 / 𝑁)) = 0) |
39 | 16, 38 | eqtrid 2785 | . . 3 ⊢ (𝜑 → (⌊‘((2 − 1) / 𝑁)) = 0) |
40 | 39 | oveq2d 7374 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − 0)) |
41 | 8 | nnred 12173 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
42 | 41, 5 | nndivred 12212 | . . . . 5 ⊢ (𝜑 → (𝐾 / 𝑁) ∈ ℝ) |
43 | 42 | flcld 13709 | . . . 4 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℤ) |
44 | 43 | zcnd 12613 | . . 3 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℂ) |
45 | 44 | subid1d 11506 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − 0) = (⌊‘(𝐾 / 𝑁))) |
46 | 14, 40, 45 | 3eqtrd 2777 | 1 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∩ cin 3910 ⊆ wss 3911 {csn 4587 class class class wbr 5106 “ cima 5637 ‘cfv 6497 (class class class)co 7358 ℝcr 11055 0cc0 11056 1c1 11057 + caddc 11059 < clt 11194 ≤ cle 11195 − cmin 11390 / cdiv 11817 ℕcn 12158 2c2 12213 ℤcz 12504 ℤ≥cuz 12768 ...cfz 13430 ⌊cfl 13701 ♯chash 14236 ∥ cdvds 16141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-sup 9383 df-inf 9384 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-fz 13431 df-fl 13703 df-hash 14237 df-dvds 16142 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |