| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz2 | Structured version Visualization version GIF version | ||
| Description: Special case of hashnzfz 44309: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| hashnzfz2.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
| hashnzfz2.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| Ref | Expression |
|---|---|
| hashnzfz2 | ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12259 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 2 | uznnssnn 12854 | . . . . 5 ⊢ (2 ∈ ℕ → (ℤ≥‘2) ⊆ ℕ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ℤ≥‘2) ⊆ ℕ |
| 4 | hashnzfz2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
| 5 | 3, 4 | sselid 3944 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | 2z 12565 | . . . 4 ⊢ 2 ∈ ℤ | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
| 8 | hashnzfz2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 9 | nnuz 12836 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 10 | 2m1e1 12307 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 11 | 10 | fveq2i 6861 | . . . . 5 ⊢ (ℤ≥‘(2 − 1)) = (ℤ≥‘1) |
| 12 | 9, 11 | eqtr4i 2755 | . . . 4 ⊢ ℕ = (ℤ≥‘(2 − 1)) |
| 13 | 8, 12 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(2 − 1))) |
| 14 | 5, 7, 13 | hashnzfz 44309 | . 2 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁)))) |
| 15 | 10 | oveq1i 7397 | . . . . 5 ⊢ ((2 − 1) / 𝑁) = (1 / 𝑁) |
| 16 | 15 | fveq2i 6861 | . . . 4 ⊢ (⌊‘((2 − 1) / 𝑁)) = (⌊‘(1 / 𝑁)) |
| 17 | 0red 11177 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 18 | 5 | nnrecred 12237 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
| 19 | 5 | nnred 12201 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 20 | 5 | nngt0d 12235 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 21 | 19, 20 | recgt0d 12117 | . . . . . 6 ⊢ (𝜑 → 0 < (1 / 𝑁)) |
| 22 | 17, 18, 21 | ltled 11322 | . . . . 5 ⊢ (𝜑 → 0 ≤ (1 / 𝑁)) |
| 23 | eluzle 12806 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
| 24 | 4, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≤ 𝑁) |
| 25 | 5 | nnzd 12556 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 26 | zlem1lt 12585 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) | |
| 27 | 6, 25, 26 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) |
| 28 | 24, 27 | mpbid 232 | . . . . . . . 8 ⊢ (𝜑 → (2 − 1) < 𝑁) |
| 29 | 10, 28 | eqbrtrrid 5143 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝑁) |
| 30 | 5 | nnrpd 12993 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ+) |
| 31 | 30 | recgt1d 13009 | . . . . . . 7 ⊢ (𝜑 → (1 < 𝑁 ↔ (1 / 𝑁) < 1)) |
| 32 | 29, 31 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) < 1) |
| 33 | 0p1e1 12303 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 34 | 32, 33 | breqtrrdi 5149 | . . . . 5 ⊢ (𝜑 → (1 / 𝑁) < (0 + 1)) |
| 35 | 0z 12540 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 36 | flbi 13778 | . . . . . 6 ⊢ (((1 / 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) | |
| 37 | 18, 35, 36 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) |
| 38 | 22, 34, 37 | mpbir2and 713 | . . . 4 ⊢ (𝜑 → (⌊‘(1 / 𝑁)) = 0) |
| 39 | 16, 38 | eqtrid 2776 | . . 3 ⊢ (𝜑 → (⌊‘((2 − 1) / 𝑁)) = 0) |
| 40 | 39 | oveq2d 7403 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − 0)) |
| 41 | 8 | nnred 12201 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 42 | 41, 5 | nndivred 12240 | . . . . 5 ⊢ (𝜑 → (𝐾 / 𝑁) ∈ ℝ) |
| 43 | 42 | flcld 13760 | . . . 4 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℤ) |
| 44 | 43 | zcnd 12639 | . . 3 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℂ) |
| 45 | 44 | subid1d 11522 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − 0) = (⌊‘(𝐾 / 𝑁))) |
| 46 | 14, 40, 45 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 {csn 4589 class class class wbr 5107 “ cima 5641 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 ≤ cle 11209 − cmin 11405 / cdiv 11835 ℕcn 12186 2c2 12241 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 ⌊cfl 13752 ♯chash 14295 ∥ cdvds 16222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fl 13754 df-hash 14296 df-dvds 16223 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |