![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz2 | Structured version Visualization version GIF version |
Description: Special case of hashnzfz 43931: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
hashnzfz2.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
hashnzfz2.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
Ref | Expression |
---|---|
hashnzfz2 | ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12332 | . . . . 5 ⊢ 2 ∈ ℕ | |
2 | uznnssnn 12926 | . . . . 5 ⊢ (2 ∈ ℕ → (ℤ≥‘2) ⊆ ℕ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ℤ≥‘2) ⊆ ℕ |
4 | hashnzfz2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
5 | 3, 4 | sselid 3976 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | 2z 12641 | . . . 4 ⊢ 2 ∈ ℤ | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
8 | hashnzfz2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
9 | nnuz 12912 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
10 | 2m1e1 12385 | . . . . . 6 ⊢ (2 − 1) = 1 | |
11 | 10 | fveq2i 6903 | . . . . 5 ⊢ (ℤ≥‘(2 − 1)) = (ℤ≥‘1) |
12 | 9, 11 | eqtr4i 2756 | . . . 4 ⊢ ℕ = (ℤ≥‘(2 − 1)) |
13 | 8, 12 | eleqtrdi 2835 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(2 − 1))) |
14 | 5, 7, 13 | hashnzfz 43931 | . 2 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁)))) |
15 | 10 | oveq1i 7433 | . . . . 5 ⊢ ((2 − 1) / 𝑁) = (1 / 𝑁) |
16 | 15 | fveq2i 6903 | . . . 4 ⊢ (⌊‘((2 − 1) / 𝑁)) = (⌊‘(1 / 𝑁)) |
17 | 0red 11263 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
18 | 5 | nnrecred 12310 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
19 | 5 | nnred 12274 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
20 | 5 | nngt0d 12308 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
21 | 19, 20 | recgt0d 12195 | . . . . . 6 ⊢ (𝜑 → 0 < (1 / 𝑁)) |
22 | 17, 18, 21 | ltled 11408 | . . . . 5 ⊢ (𝜑 → 0 ≤ (1 / 𝑁)) |
23 | eluzle 12882 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
24 | 4, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≤ 𝑁) |
25 | 5 | nnzd 12632 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
26 | zlem1lt 12661 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) | |
27 | 6, 25, 26 | sylancr 585 | . . . . . . . . 9 ⊢ (𝜑 → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) |
28 | 24, 27 | mpbid 231 | . . . . . . . 8 ⊢ (𝜑 → (2 − 1) < 𝑁) |
29 | 10, 28 | eqbrtrrid 5188 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝑁) |
30 | 5 | nnrpd 13063 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ+) |
31 | 30 | recgt1d 13079 | . . . . . . 7 ⊢ (𝜑 → (1 < 𝑁 ↔ (1 / 𝑁) < 1)) |
32 | 29, 31 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) < 1) |
33 | 0p1e1 12381 | . . . . . 6 ⊢ (0 + 1) = 1 | |
34 | 32, 33 | breqtrrdi 5194 | . . . . 5 ⊢ (𝜑 → (1 / 𝑁) < (0 + 1)) |
35 | 0z 12616 | . . . . . 6 ⊢ 0 ∈ ℤ | |
36 | flbi 13831 | . . . . . 6 ⊢ (((1 / 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) | |
37 | 18, 35, 36 | sylancl 584 | . . . . 5 ⊢ (𝜑 → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) |
38 | 22, 34, 37 | mpbir2and 711 | . . . 4 ⊢ (𝜑 → (⌊‘(1 / 𝑁)) = 0) |
39 | 16, 38 | eqtrid 2777 | . . 3 ⊢ (𝜑 → (⌊‘((2 − 1) / 𝑁)) = 0) |
40 | 39 | oveq2d 7439 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − 0)) |
41 | 8 | nnred 12274 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
42 | 41, 5 | nndivred 12313 | . . . . 5 ⊢ (𝜑 → (𝐾 / 𝑁) ∈ ℝ) |
43 | 42 | flcld 13813 | . . . 4 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℤ) |
44 | 43 | zcnd 12714 | . . 3 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℂ) |
45 | 44 | subid1d 11606 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − 0) = (⌊‘(𝐾 / 𝑁))) |
46 | 14, 40, 45 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∩ cin 3945 ⊆ wss 3946 {csn 4632 class class class wbr 5152 “ cima 5684 ‘cfv 6553 (class class class)co 7423 ℝcr 11153 0cc0 11154 1c1 11155 + caddc 11157 < clt 11294 ≤ cle 11295 − cmin 11490 / cdiv 11917 ℕcn 12259 2c2 12314 ℤcz 12605 ℤ≥cuz 12869 ...cfz 13533 ⌊cfl 13805 ♯chash 14342 ∥ cdvds 16251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 ax-pre-sup 11232 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-1st 8002 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-sup 9481 df-inf 9482 df-card 9978 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-div 11918 df-nn 12260 df-2 12322 df-n0 12520 df-z 12606 df-uz 12870 df-rp 13024 df-fz 13534 df-fl 13807 df-hash 14343 df-dvds 16252 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |