| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz2 | Structured version Visualization version GIF version | ||
| Description: Special case of hashnzfz 44303: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| hashnzfz2.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
| hashnzfz2.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| Ref | Expression |
|---|---|
| hashnzfz2 | ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12201 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 2 | uznnssnn 12796 | . . . . 5 ⊢ (2 ∈ ℕ → (ℤ≥‘2) ⊆ ℕ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ℤ≥‘2) ⊆ ℕ |
| 4 | hashnzfz2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
| 5 | 3, 4 | sselid 3933 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | 2z 12507 | . . . 4 ⊢ 2 ∈ ℤ | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
| 8 | hashnzfz2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 9 | nnuz 12778 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 10 | 2m1e1 12249 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 11 | 10 | fveq2i 6825 | . . . . 5 ⊢ (ℤ≥‘(2 − 1)) = (ℤ≥‘1) |
| 12 | 9, 11 | eqtr4i 2755 | . . . 4 ⊢ ℕ = (ℤ≥‘(2 − 1)) |
| 13 | 8, 12 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(2 − 1))) |
| 14 | 5, 7, 13 | hashnzfz 44303 | . 2 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁)))) |
| 15 | 10 | oveq1i 7359 | . . . . 5 ⊢ ((2 − 1) / 𝑁) = (1 / 𝑁) |
| 16 | 15 | fveq2i 6825 | . . . 4 ⊢ (⌊‘((2 − 1) / 𝑁)) = (⌊‘(1 / 𝑁)) |
| 17 | 0red 11118 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 18 | 5 | nnrecred 12179 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
| 19 | 5 | nnred 12143 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 20 | 5 | nngt0d 12177 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 21 | 19, 20 | recgt0d 12059 | . . . . . 6 ⊢ (𝜑 → 0 < (1 / 𝑁)) |
| 22 | 17, 18, 21 | ltled 11264 | . . . . 5 ⊢ (𝜑 → 0 ≤ (1 / 𝑁)) |
| 23 | eluzle 12748 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
| 24 | 4, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≤ 𝑁) |
| 25 | 5 | nnzd 12498 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 26 | zlem1lt 12527 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) | |
| 27 | 6, 25, 26 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) |
| 28 | 24, 27 | mpbid 232 | . . . . . . . 8 ⊢ (𝜑 → (2 − 1) < 𝑁) |
| 29 | 10, 28 | eqbrtrrid 5128 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝑁) |
| 30 | 5 | nnrpd 12935 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ+) |
| 31 | 30 | recgt1d 12951 | . . . . . . 7 ⊢ (𝜑 → (1 < 𝑁 ↔ (1 / 𝑁) < 1)) |
| 32 | 29, 31 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) < 1) |
| 33 | 0p1e1 12245 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 34 | 32, 33 | breqtrrdi 5134 | . . . . 5 ⊢ (𝜑 → (1 / 𝑁) < (0 + 1)) |
| 35 | 0z 12482 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 36 | flbi 13720 | . . . . . 6 ⊢ (((1 / 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) | |
| 37 | 18, 35, 36 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) |
| 38 | 22, 34, 37 | mpbir2and 713 | . . . 4 ⊢ (𝜑 → (⌊‘(1 / 𝑁)) = 0) |
| 39 | 16, 38 | eqtrid 2776 | . . 3 ⊢ (𝜑 → (⌊‘((2 − 1) / 𝑁)) = 0) |
| 40 | 39 | oveq2d 7365 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − 0)) |
| 41 | 8 | nnred 12143 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 42 | 41, 5 | nndivred 12182 | . . . . 5 ⊢ (𝜑 → (𝐾 / 𝑁) ∈ ℝ) |
| 43 | 42 | flcld 13702 | . . . 4 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℤ) |
| 44 | 43 | zcnd 12581 | . . 3 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℂ) |
| 45 | 44 | subid1d 11464 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − 0) = (⌊‘(𝐾 / 𝑁))) |
| 46 | 14, 40, 45 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ⊆ wss 3903 {csn 4577 class class class wbr 5092 “ cima 5622 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 − cmin 11347 / cdiv 11777 ℕcn 12128 2c2 12183 ℤcz 12471 ℤ≥cuz 12735 ...cfz 13410 ⌊cfl 13694 ♯chash 14237 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fl 13696 df-hash 14238 df-dvds 16164 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |