| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz2 | Structured version Visualization version GIF version | ||
| Description: Special case of hashnzfz 44412: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| hashnzfz2.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
| hashnzfz2.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| Ref | Expression |
|---|---|
| hashnzfz2 | ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12198 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 2 | uznnssnn 12793 | . . . . 5 ⊢ (2 ∈ ℕ → (ℤ≥‘2) ⊆ ℕ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ℤ≥‘2) ⊆ ℕ |
| 4 | hashnzfz2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
| 5 | 3, 4 | sselid 3927 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | 2z 12504 | . . . 4 ⊢ 2 ∈ ℤ | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
| 8 | hashnzfz2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 9 | nnuz 12775 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 10 | 2m1e1 12246 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 11 | 10 | fveq2i 6825 | . . . . 5 ⊢ (ℤ≥‘(2 − 1)) = (ℤ≥‘1) |
| 12 | 9, 11 | eqtr4i 2757 | . . . 4 ⊢ ℕ = (ℤ≥‘(2 − 1)) |
| 13 | 8, 12 | eleqtrdi 2841 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(2 − 1))) |
| 14 | 5, 7, 13 | hashnzfz 44412 | . 2 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁)))) |
| 15 | 10 | oveq1i 7356 | . . . . 5 ⊢ ((2 − 1) / 𝑁) = (1 / 𝑁) |
| 16 | 15 | fveq2i 6825 | . . . 4 ⊢ (⌊‘((2 − 1) / 𝑁)) = (⌊‘(1 / 𝑁)) |
| 17 | 0red 11115 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 18 | 5 | nnrecred 12176 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
| 19 | 5 | nnred 12140 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 20 | 5 | nngt0d 12174 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 21 | 19, 20 | recgt0d 12056 | . . . . . 6 ⊢ (𝜑 → 0 < (1 / 𝑁)) |
| 22 | 17, 18, 21 | ltled 11261 | . . . . 5 ⊢ (𝜑 → 0 ≤ (1 / 𝑁)) |
| 23 | eluzle 12745 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
| 24 | 4, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≤ 𝑁) |
| 25 | 5 | nnzd 12495 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 26 | zlem1lt 12524 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) | |
| 27 | 6, 25, 26 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (2 ≤ 𝑁 ↔ (2 − 1) < 𝑁)) |
| 28 | 24, 27 | mpbid 232 | . . . . . . . 8 ⊢ (𝜑 → (2 − 1) < 𝑁) |
| 29 | 10, 28 | eqbrtrrid 5125 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝑁) |
| 30 | 5 | nnrpd 12932 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ+) |
| 31 | 30 | recgt1d 12948 | . . . . . . 7 ⊢ (𝜑 → (1 < 𝑁 ↔ (1 / 𝑁) < 1)) |
| 32 | 29, 31 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑁) < 1) |
| 33 | 0p1e1 12242 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 34 | 32, 33 | breqtrrdi 5131 | . . . . 5 ⊢ (𝜑 → (1 / 𝑁) < (0 + 1)) |
| 35 | 0z 12479 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 36 | flbi 13720 | . . . . . 6 ⊢ (((1 / 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) | |
| 37 | 18, 35, 36 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((⌊‘(1 / 𝑁)) = 0 ↔ (0 ≤ (1 / 𝑁) ∧ (1 / 𝑁) < (0 + 1)))) |
| 38 | 22, 34, 37 | mpbir2and 713 | . . . 4 ⊢ (𝜑 → (⌊‘(1 / 𝑁)) = 0) |
| 39 | 16, 38 | eqtrid 2778 | . . 3 ⊢ (𝜑 → (⌊‘((2 − 1) / 𝑁)) = 0) |
| 40 | 39 | oveq2d 7362 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − (⌊‘((2 − 1) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − 0)) |
| 41 | 8 | nnred 12140 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 42 | 41, 5 | nndivred 12179 | . . . . 5 ⊢ (𝜑 → (𝐾 / 𝑁) ∈ ℝ) |
| 43 | 42 | flcld 13702 | . . . 4 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℤ) |
| 44 | 43 | zcnd 12578 | . . 3 ⊢ (𝜑 → (⌊‘(𝐾 / 𝑁)) ∈ ℂ) |
| 45 | 44 | subid1d 11461 | . 2 ⊢ (𝜑 → ((⌊‘(𝐾 / 𝑁)) − 0) = (⌊‘(𝐾 / 𝑁))) |
| 46 | 14, 40, 45 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 {csn 4573 class class class wbr 5089 “ cima 5617 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 − cmin 11344 / cdiv 11774 ℕcn 12125 2c2 12180 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 ⌊cfl 13694 ♯chash 14237 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fl 13696 df-hash 14238 df-dvds 16164 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |