| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iserge0 | Structured version Visualization version GIF version | ||
| Description: The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.) |
| Ref | Expression |
|---|---|
| clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| iserge0.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| iserge0.3 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
| iserge0.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| iserge0.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| iserge0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | iserge0.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | serclim0 15481 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ≥‘𝑀) × {0})) ⇝ 0) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → seq𝑀( + , ((ℤ≥‘𝑀) × {0})) ⇝ 0) |
| 5 | iserge0.3 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) | |
| 6 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
| 7 | 6, 1 | eleqtrdi 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 8 | c0ex 11103 | . . . . 5 ⊢ 0 ∈ V | |
| 9 | 8 | fvconst2 7138 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (((ℤ≥‘𝑀) × {0})‘𝑘) = 0) |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((ℤ≥‘𝑀) × {0})‘𝑘) = 0) |
| 11 | 0re 11111 | . . 3 ⊢ 0 ∈ ℝ | |
| 12 | 10, 11 | eqeltrdi 2839 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((ℤ≥‘𝑀) × {0})‘𝑘) ∈ ℝ) |
| 13 | iserge0.4 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
| 14 | iserge0.5 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) | |
| 15 | 10, 14 | eqbrtrd 5113 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((ℤ≥‘𝑀) × {0})‘𝑘) ≤ (𝐹‘𝑘)) |
| 16 | 1, 2, 4, 5, 12, 13, 15 | iserle 15564 | 1 ⊢ (𝜑 → 0 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4576 class class class wbr 5091 × cxp 5614 ‘cfv 6481 ℝcr 11002 0cc0 11003 + caddc 11006 ≤ cle 11144 ℤcz 12465 ℤ≥cuz 12729 seqcseq 13905 ⇝ cli 15388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-rlim 15393 |
| This theorem is referenced by: isumge0 15670 stirlinglem11 46121 |
| Copyright terms: Public domain | W3C validator |