MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserge0 Structured version   Visualization version   GIF version

Theorem iserge0 15633
Description: The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
iserge0.2 (𝜑𝑀 ∈ ℤ)
iserge0.3 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
iserge0.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
iserge0.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
iserge0 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍

Proof of Theorem iserge0
StepHypRef Expression
1 clim2ser.1 . 2 𝑍 = (ℤ𝑀)
2 iserge0.2 . 2 (𝜑𝑀 ∈ ℤ)
3 serclim0 15549 . . 3 (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
42, 3syl 17 . 2 (𝜑 → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
5 iserge0.3 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
6 simpr 484 . . . . 5 ((𝜑𝑘𝑍) → 𝑘𝑍)
76, 1eleqtrdi 2839 . . . 4 ((𝜑𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
8 c0ex 11174 . . . . 5 0 ∈ V
98fvconst2 7180 . . . 4 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = 0)
107, 9syl 17 . . 3 ((𝜑𝑘𝑍) → (((ℤ𝑀) × {0})‘𝑘) = 0)
11 0re 11182 . . 3 0 ∈ ℝ
1210, 11eqeltrdi 2837 . 2 ((𝜑𝑘𝑍) → (((ℤ𝑀) × {0})‘𝑘) ∈ ℝ)
13 iserge0.4 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
14 iserge0.5 . . 3 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
1510, 14eqbrtrd 5131 . 2 ((𝜑𝑘𝑍) → (((ℤ𝑀) × {0})‘𝑘) ≤ (𝐹𝑘))
161, 2, 4, 5, 12, 13, 15iserle 15632 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4591   class class class wbr 5109   × cxp 5638  cfv 6513  cr 11073  0cc0 11074   + caddc 11077  cle 11215  cz 12535  cuz 12799  seqcseq 13972  cli 15456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-seq 13973  df-exp 14033  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-rlim 15461
This theorem is referenced by:  isumge0  15738  stirlinglem11  46075
  Copyright terms: Public domain W3C validator