Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  climub Structured version   Visualization version   GIF version

Theorem climub 14800
 Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
climub.2 (𝜑𝑁𝑍)
climub.3 (𝜑𝐹𝐴)
climub.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climub.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
climub (𝜑 → (𝐹𝑁) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem climub
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2778 . 2 (ℤ𝑁) = (ℤ𝑁)
2 climub.2 . . . 4 (𝜑𝑁𝑍)
3 clim2ser.1 . . . 4 𝑍 = (ℤ𝑀)
42, 3syl6eleq 2869 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 12002 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 17 . 2 (𝜑𝑁 ∈ ℤ)
7 fveq2 6446 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
87eleq1d 2844 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
98imbi2d 332 . . . 4 (𝑘 = 𝑁 → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹𝑁) ∈ ℝ)))
10 climub.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1110expcom 404 . . . 4 (𝑘𝑍 → (𝜑 → (𝐹𝑘) ∈ ℝ))
129, 11vtoclga 3474 . . 3 (𝑁𝑍 → (𝜑 → (𝐹𝑁) ∈ ℝ))
132, 12mpcom 38 . 2 (𝜑 → (𝐹𝑁) ∈ ℝ)
14 climub.3 . 2 (𝜑𝐹𝐴)
153uztrn2 12010 . . . 4 ((𝑁𝑍𝑗 ∈ (ℤ𝑁)) → 𝑗𝑍)
162, 15sylan 575 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝑗𝑍)
17 fveq2 6446 . . . . . . 7 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1817eleq1d 2844 . . . . . 6 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑗) ∈ ℝ))
1918imbi2d 332 . . . . 5 (𝑘 = 𝑗 → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹𝑗) ∈ ℝ)))
2019, 11vtoclga 3474 . . . 4 (𝑗𝑍 → (𝜑 → (𝐹𝑗) ∈ ℝ))
2120impcom 398 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
2216, 21syldan 585 . 2 ((𝜑𝑗 ∈ (ℤ𝑁)) → (𝐹𝑗) ∈ ℝ)
23 simpr 479 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ (ℤ𝑁))
24 elfzuz 12655 . . . . 5 (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ𝑁))
253uztrn2 12010 . . . . . . 7 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
262, 25sylan 575 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
2726, 10syldan 585 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2824, 27sylan2 586 . . . 4 ((𝜑𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ ℝ)
2928adantlr 705 . . 3 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ ℝ)
30 elfzuz 12655 . . . . 5 (𝑘 ∈ (𝑁...(𝑗 − 1)) → 𝑘 ∈ (ℤ𝑁))
31 climub.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3226, 31syldan 585 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3330, 32sylan2 586 . . . 4 ((𝜑𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3433adantlr 705 . . 3 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3523, 29, 34monoord 13149 . 2 ((𝜑𝑗 ∈ (ℤ𝑁)) → (𝐹𝑁) ≤ (𝐹𝑗))
361, 6, 13, 14, 22, 35climlec2 14797 1 (𝜑 → (𝐹𝑁) ≤ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1601   ∈ wcel 2107   class class class wbr 4886  ‘cfv 6135  (class class class)co 6922  ℝcr 10271  1c1 10273   + caddc 10275   ≤ cle 10412   − cmin 10606  ℤcz 11728  ℤ≥cuz 11992  ...cfz 12643   ⇝ cli 14623 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fl 12912  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628 This theorem is referenced by:  climserle  14801  itg2i1fseqle  23958  emcllem7  25180
 Copyright terms: Public domain W3C validator