MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climub Structured version   Visualization version   GIF version

Theorem climub 15012
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
climub.2 (𝜑𝑁𝑍)
climub.3 (𝜑𝐹𝐴)
climub.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climub.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
climub (𝜑 → (𝐹𝑁) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem climub
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . 2 (ℤ𝑁) = (ℤ𝑁)
2 climub.2 . . . 4 (𝜑𝑁𝑍)
3 clim2ser.1 . . . 4 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2923 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 12247 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 17 . 2 (𝜑𝑁 ∈ ℤ)
7 fveq2 6665 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
87eleq1d 2897 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
98imbi2d 343 . . . 4 (𝑘 = 𝑁 → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹𝑁) ∈ ℝ)))
10 climub.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1110expcom 416 . . . 4 (𝑘𝑍 → (𝜑 → (𝐹𝑘) ∈ ℝ))
129, 11vtoclga 3574 . . 3 (𝑁𝑍 → (𝜑 → (𝐹𝑁) ∈ ℝ))
132, 12mpcom 38 . 2 (𝜑 → (𝐹𝑁) ∈ ℝ)
14 climub.3 . 2 (𝜑𝐹𝐴)
153uztrn2 12256 . . . 4 ((𝑁𝑍𝑗 ∈ (ℤ𝑁)) → 𝑗𝑍)
162, 15sylan 582 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝑗𝑍)
17 fveq2 6665 . . . . . . 7 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1817eleq1d 2897 . . . . . 6 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑗) ∈ ℝ))
1918imbi2d 343 . . . . 5 (𝑘 = 𝑗 → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹𝑗) ∈ ℝ)))
2019, 11vtoclga 3574 . . . 4 (𝑗𝑍 → (𝜑 → (𝐹𝑗) ∈ ℝ))
2120impcom 410 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
2216, 21syldan 593 . 2 ((𝜑𝑗 ∈ (ℤ𝑁)) → (𝐹𝑗) ∈ ℝ)
23 simpr 487 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ (ℤ𝑁))
24 elfzuz 12898 . . . . 5 (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ𝑁))
253uztrn2 12256 . . . . . . 7 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
262, 25sylan 582 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
2726, 10syldan 593 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2824, 27sylan2 594 . . . 4 ((𝜑𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ ℝ)
2928adantlr 713 . . 3 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ ℝ)
30 elfzuz 12898 . . . . 5 (𝑘 ∈ (𝑁...(𝑗 − 1)) → 𝑘 ∈ (ℤ𝑁))
31 climub.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3226, 31syldan 593 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3330, 32sylan2 594 . . . 4 ((𝜑𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3433adantlr 713 . . 3 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3523, 29, 34monoord 13394 . 2 ((𝜑𝑗 ∈ (ℤ𝑁)) → (𝐹𝑁) ≤ (𝐹𝑗))
361, 6, 13, 14, 22, 35climlec2 15009 1 (𝜑 → (𝐹𝑁) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110   class class class wbr 5059  cfv 6350  (class class class)co 7150  cr 10530  1c1 10532   + caddc 10534  cle 10670  cmin 10864  cz 11975  cuz 12237  ...cfz 12886  cli 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fl 13156  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840
This theorem is referenced by:  climserle  15013  itg2i1fseqle  24349  emcllem7  25573
  Copyright terms: Public domain W3C validator