![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climub | Structured version Visualization version GIF version |
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.) |
Ref | Expression |
---|---|
clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climub.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
climub.3 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climub.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climub.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
Ref | Expression |
---|---|
climub | ⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . 2 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
2 | climub.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | clim2ser.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | eleqtrdi 2844 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzelz 12778 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | fveq2 6843 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) | |
8 | 7 | eleq1d 2819 | . . . . 5 ⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑁) ∈ ℝ)) |
9 | 8 | imbi2d 341 | . . . 4 ⊢ (𝑘 = 𝑁 → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘𝑁) ∈ ℝ))) |
10 | climub.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
11 | 10 | expcom 415 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → (𝐹‘𝑘) ∈ ℝ)) |
12 | 9, 11 | vtoclga 3533 | . . 3 ⊢ (𝑁 ∈ 𝑍 → (𝜑 → (𝐹‘𝑁) ∈ ℝ)) |
13 | 2, 12 | mpcom 38 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
14 | climub.3 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
15 | 3 | uztrn2 12787 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ 𝑍) |
16 | 2, 15 | sylan 581 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ 𝑍) |
17 | fveq2 6843 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
18 | 17 | eleq1d 2819 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑗) ∈ ℝ)) |
19 | 18 | imbi2d 341 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘𝑗) ∈ ℝ))) |
20 | 19, 11 | vtoclga 3533 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → (𝜑 → (𝐹‘𝑗) ∈ ℝ)) |
21 | 20 | impcom 409 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
22 | 16, 21 | syldan 592 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑗) ∈ ℝ) |
23 | simpr 486 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ (ℤ≥‘𝑁)) | |
24 | elfzuz 13443 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
25 | 3 | uztrn2 12787 | . . . . . . 7 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
26 | 2, 25 | sylan 581 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
27 | 26, 10 | syldan 592 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
28 | 24, 27 | sylan2 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
29 | 28 | adantlr 714 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
30 | elfzuz 13443 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...(𝑗 − 1)) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
31 | climub.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) | |
32 | 26, 31 | syldan 592 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
33 | 30, 32 | sylan2 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
34 | 33 | adantlr 714 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
35 | 23, 29, 34 | monoord 13944 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑁) ≤ (𝐹‘𝑗)) |
36 | 1, 6, 13, 14, 22, 35 | climlec2 15549 | 1 ⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5106 ‘cfv 6497 (class class class)co 7358 ℝcr 11055 1c1 11057 + caddc 11059 ≤ cle 11195 − cmin 11390 ℤcz 12504 ℤ≥cuz 12768 ...cfz 13430 ⇝ cli 15372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-pm 8771 df-en 8887 df-dom 8888 df-sdom 8889 df-sup 9383 df-inf 9384 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-fz 13431 df-fl 13703 df-seq 13913 df-exp 13974 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-clim 15376 df-rlim 15377 |
This theorem is referenced by: climserle 15553 itg2i1fseqle 25135 emcllem7 26367 |
Copyright terms: Public domain | W3C validator |