Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climub | Structured version Visualization version GIF version |
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.) |
Ref | Expression |
---|---|
clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climub.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
climub.3 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climub.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climub.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
Ref | Expression |
---|---|
climub | ⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
2 | climub.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | clim2ser.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | eleqtrdi 2849 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzelz 12592 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | fveq2 6774 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) | |
8 | 7 | eleq1d 2823 | . . . . 5 ⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑁) ∈ ℝ)) |
9 | 8 | imbi2d 341 | . . . 4 ⊢ (𝑘 = 𝑁 → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘𝑁) ∈ ℝ))) |
10 | climub.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
11 | 10 | expcom 414 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → (𝐹‘𝑘) ∈ ℝ)) |
12 | 9, 11 | vtoclga 3513 | . . 3 ⊢ (𝑁 ∈ 𝑍 → (𝜑 → (𝐹‘𝑁) ∈ ℝ)) |
13 | 2, 12 | mpcom 38 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
14 | climub.3 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
15 | 3 | uztrn2 12601 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ 𝑍) |
16 | 2, 15 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ 𝑍) |
17 | fveq2 6774 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
18 | 17 | eleq1d 2823 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑗) ∈ ℝ)) |
19 | 18 | imbi2d 341 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘𝑗) ∈ ℝ))) |
20 | 19, 11 | vtoclga 3513 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → (𝜑 → (𝐹‘𝑗) ∈ ℝ)) |
21 | 20 | impcom 408 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
22 | 16, 21 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑗) ∈ ℝ) |
23 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ (ℤ≥‘𝑁)) | |
24 | elfzuz 13252 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
25 | 3 | uztrn2 12601 | . . . . . . 7 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
26 | 2, 25 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
27 | 26, 10 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
28 | 24, 27 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
29 | 28 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
30 | elfzuz 13252 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...(𝑗 − 1)) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
31 | climub.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) | |
32 | 26, 31 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
33 | 30, 32 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
34 | 33 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
35 | 23, 29, 34 | monoord 13753 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑁) ≤ (𝐹‘𝑗)) |
36 | 1, 6, 13, 14, 22, 35 | climlec2 15370 | 1 ⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 + caddc 10874 ≤ cle 11010 − cmin 11205 ℤcz 12319 ℤ≥cuz 12582 ...cfz 13239 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fl 13512 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 |
This theorem is referenced by: climserle 15374 itg2i1fseqle 24919 emcllem7 26151 |
Copyright terms: Public domain | W3C validator |