MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climub Structured version   Visualization version   GIF version

Theorem climub 15604
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
climub.2 (𝜑𝑁𝑍)
climub.3 (𝜑𝐹𝐴)
climub.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climub.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
climub (𝜑 → (𝐹𝑁) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem climub
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . 2 (ℤ𝑁) = (ℤ𝑁)
2 climub.2 . . . 4 (𝜑𝑁𝑍)
3 clim2ser.1 . . . 4 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2843 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 12828 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 17 . 2 (𝜑𝑁 ∈ ℤ)
7 fveq2 6888 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
87eleq1d 2818 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
98imbi2d 340 . . . 4 (𝑘 = 𝑁 → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹𝑁) ∈ ℝ)))
10 climub.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1110expcom 414 . . . 4 (𝑘𝑍 → (𝜑 → (𝐹𝑘) ∈ ℝ))
129, 11vtoclga 3565 . . 3 (𝑁𝑍 → (𝜑 → (𝐹𝑁) ∈ ℝ))
132, 12mpcom 38 . 2 (𝜑 → (𝐹𝑁) ∈ ℝ)
14 climub.3 . 2 (𝜑𝐹𝐴)
153uztrn2 12837 . . . 4 ((𝑁𝑍𝑗 ∈ (ℤ𝑁)) → 𝑗𝑍)
162, 15sylan 580 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝑗𝑍)
17 fveq2 6888 . . . . . . 7 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1817eleq1d 2818 . . . . . 6 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑗) ∈ ℝ))
1918imbi2d 340 . . . . 5 (𝑘 = 𝑗 → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹𝑗) ∈ ℝ)))
2019, 11vtoclga 3565 . . . 4 (𝑗𝑍 → (𝜑 → (𝐹𝑗) ∈ ℝ))
2120impcom 408 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
2216, 21syldan 591 . 2 ((𝜑𝑗 ∈ (ℤ𝑁)) → (𝐹𝑗) ∈ ℝ)
23 simpr 485 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ (ℤ𝑁))
24 elfzuz 13493 . . . . 5 (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ𝑁))
253uztrn2 12837 . . . . . . 7 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
262, 25sylan 580 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
2726, 10syldan 591 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2824, 27sylan2 593 . . . 4 ((𝜑𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ ℝ)
2928adantlr 713 . . 3 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ ℝ)
30 elfzuz 13493 . . . . 5 (𝑘 ∈ (𝑁...(𝑗 − 1)) → 𝑘 ∈ (ℤ𝑁))
31 climub.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3226, 31syldan 591 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3330, 32sylan2 593 . . . 4 ((𝜑𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3433adantlr 713 . . 3 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3523, 29, 34monoord 13994 . 2 ((𝜑𝑗 ∈ (ℤ𝑁)) → (𝐹𝑁) ≤ (𝐹𝑗))
361, 6, 13, 14, 22, 35climlec2 15601 1 (𝜑 → (𝐹𝑁) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   class class class wbr 5147  cfv 6540  (class class class)co 7405  cr 11105  1c1 11107   + caddc 11109  cle 11245  cmin 11440  cz 12554  cuz 12818  ...cfz 13480  cli 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fl 13753  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429
This theorem is referenced by:  climserle  15605  itg2i1fseqle  25263  emcllem7  26495
  Copyright terms: Public domain W3C validator