MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climub Structured version   Visualization version   GIF version

Theorem climub 15564
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
climub.2 (𝜑𝑁𝑍)
climub.3 (𝜑𝐹𝐴)
climub.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climub.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
climub (𝜑 → (𝐹𝑁) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem climub
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (ℤ𝑁) = (ℤ𝑁)
2 climub.2 . . . 4 (𝜑𝑁𝑍)
3 clim2ser.1 . . . 4 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2841 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 12737 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 17 . 2 (𝜑𝑁 ∈ ℤ)
7 fveq2 6817 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
87eleq1d 2816 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
98imbi2d 340 . . . 4 (𝑘 = 𝑁 → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹𝑁) ∈ ℝ)))
10 climub.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1110expcom 413 . . . 4 (𝑘𝑍 → (𝜑 → (𝐹𝑘) ∈ ℝ))
129, 11vtoclga 3528 . . 3 (𝑁𝑍 → (𝜑 → (𝐹𝑁) ∈ ℝ))
132, 12mpcom 38 . 2 (𝜑 → (𝐹𝑁) ∈ ℝ)
14 climub.3 . 2 (𝜑𝐹𝐴)
153uztrn2 12746 . . . 4 ((𝑁𝑍𝑗 ∈ (ℤ𝑁)) → 𝑗𝑍)
162, 15sylan 580 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝑗𝑍)
17 fveq2 6817 . . . . . . 7 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1817eleq1d 2816 . . . . . 6 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑗) ∈ ℝ))
1918imbi2d 340 . . . . 5 (𝑘 = 𝑗 → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹𝑗) ∈ ℝ)))
2019, 11vtoclga 3528 . . . 4 (𝑗𝑍 → (𝜑 → (𝐹𝑗) ∈ ℝ))
2120impcom 407 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
2216, 21syldan 591 . 2 ((𝜑𝑗 ∈ (ℤ𝑁)) → (𝐹𝑗) ∈ ℝ)
23 simpr 484 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ (ℤ𝑁))
24 elfzuz 13415 . . . . 5 (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ𝑁))
253uztrn2 12746 . . . . . . 7 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
262, 25sylan 580 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
2726, 10syldan 591 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2824, 27sylan2 593 . . . 4 ((𝜑𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ ℝ)
2928adantlr 715 . . 3 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ ℝ)
30 elfzuz 13415 . . . . 5 (𝑘 ∈ (𝑁...(𝑗 − 1)) → 𝑘 ∈ (ℤ𝑁))
31 climub.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3226, 31syldan 591 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3330, 32sylan2 593 . . . 4 ((𝜑𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3433adantlr 715 . . 3 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3523, 29, 34monoord 13934 . 2 ((𝜑𝑗 ∈ (ℤ𝑁)) → (𝐹𝑁) ≤ (𝐹𝑗))
361, 6, 13, 14, 22, 35climlec2 15561 1 (𝜑 → (𝐹𝑁) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5086  cfv 6476  (class class class)co 7341  cr 11000  1c1 11002   + caddc 11004  cle 11142  cmin 11339  cz 12463  cuz 12727  ...cfz 13402  cli 15386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-fz 13403  df-fl 13691  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-rlim 15391
This theorem is referenced by:  climserle  15565  itg2i1fseqle  25677  emcllem7  26934
  Copyright terms: Public domain W3C validator