![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climub | Structured version Visualization version GIF version |
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.) |
Ref | Expression |
---|---|
clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climub.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
climub.3 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climub.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climub.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
Ref | Expression |
---|---|
climub | ⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . 2 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
2 | climub.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | clim2ser.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | eleqtrdi 2837 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzelz 12833 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | fveq2 6884 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) | |
8 | 7 | eleq1d 2812 | . . . . 5 ⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑁) ∈ ℝ)) |
9 | 8 | imbi2d 340 | . . . 4 ⊢ (𝑘 = 𝑁 → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘𝑁) ∈ ℝ))) |
10 | climub.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
11 | 10 | expcom 413 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → (𝐹‘𝑘) ∈ ℝ)) |
12 | 9, 11 | vtoclga 3560 | . . 3 ⊢ (𝑁 ∈ 𝑍 → (𝜑 → (𝐹‘𝑁) ∈ ℝ)) |
13 | 2, 12 | mpcom 38 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
14 | climub.3 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
15 | 3 | uztrn2 12842 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ 𝑍) |
16 | 2, 15 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ 𝑍) |
17 | fveq2 6884 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
18 | 17 | eleq1d 2812 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑗) ∈ ℝ)) |
19 | 18 | imbi2d 340 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘𝑗) ∈ ℝ))) |
20 | 19, 11 | vtoclga 3560 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → (𝜑 → (𝐹‘𝑗) ∈ ℝ)) |
21 | 20 | impcom 407 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
22 | 16, 21 | syldan 590 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑗) ∈ ℝ) |
23 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ (ℤ≥‘𝑁)) | |
24 | elfzuz 13500 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
25 | 3 | uztrn2 12842 | . . . . . . 7 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
26 | 2, 25 | sylan 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
27 | 26, 10 | syldan 590 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
28 | 24, 27 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
29 | 28 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
30 | elfzuz 13500 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...(𝑗 − 1)) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
31 | climub.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) | |
32 | 26, 31 | syldan 590 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
33 | 30, 32 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
34 | 33 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
35 | 23, 29, 34 | monoord 14001 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑁) ≤ (𝐹‘𝑗)) |
36 | 1, 6, 13, 14, 22, 35 | climlec2 15609 | 1 ⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 ℝcr 11108 1c1 11110 + caddc 11112 ≤ cle 11250 − cmin 11445 ℤcz 12559 ℤ≥cuz 12823 ...cfz 13487 ⇝ cli 15432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-fz 13488 df-fl 13760 df-seq 13970 df-exp 14031 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 |
This theorem is referenced by: climserle 15613 itg2i1fseqle 25635 emcllem7 26885 |
Copyright terms: Public domain | W3C validator |