Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isumge0 | Structured version Visualization version GIF version |
Description: An infinite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
isumrecl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumrecl.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumrecl.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumrecl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) |
isumrecl.5 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
isumge0.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
isumge0 | ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝑍 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumrecl.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isumrecl.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | isumrecl.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
4 | isumrecl.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) | |
5 | 4 | recnd 11053 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
6 | isumrecl.5 | . . . . 5 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
7 | 1, 2, 3, 5, 6 | isumclim2 15519 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
8 | fveq2 6804 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
9 | 8 | cbvsumv 15457 | . . . . 5 ⊢ Σ𝑗 ∈ 𝑍 (𝐹‘𝑗) = Σ𝑘 ∈ 𝑍 (𝐹‘𝑘) |
10 | 3 | sumeq2dv 15464 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐹‘𝑘) = Σ𝑘 ∈ 𝑍 𝐴) |
11 | 9, 10 | eqtrid 2788 | . . . 4 ⊢ (𝜑 → Σ𝑗 ∈ 𝑍 (𝐹‘𝑗) = Σ𝑘 ∈ 𝑍 𝐴) |
12 | 7, 11 | breqtrrd 5109 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑗 ∈ 𝑍 (𝐹‘𝑗)) |
13 | 3, 4 | eqeltrd 2837 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
14 | isumge0.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) | |
15 | 14, 3 | breqtrrd 5109 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
16 | 1, 2, 12, 13, 15 | iserge0 15421 | . 2 ⊢ (𝜑 → 0 ≤ Σ𝑗 ∈ 𝑍 (𝐹‘𝑗)) |
17 | 16, 11 | breqtrd 5107 | 1 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝑍 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 dom cdm 5600 ‘cfv 6458 ℝcr 10920 0cc0 10921 + caddc 10924 ≤ cle 11060 ℤcz 12369 ℤ≥cuz 12632 seqcseq 13771 ⇝ cli 15242 Σcsu 15446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-inf 9250 df-oi 9317 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-fz 13290 df-fzo 13433 df-fl 13562 df-seq 13772 df-exp 13833 df-hash 14095 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-clim 15246 df-rlim 15247 df-sum 15447 |
This theorem is referenced by: mertenslem1 15645 mertenslem2 15646 rpnnen2lem12 15983 log2tlbnd 26144 esumcvg 32103 stirlinglem12 43855 |
Copyright terms: Public domain | W3C validator |