MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumge0 Structured version   Visualization version   GIF version

Theorem isumge0 15675
Description: An infinite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
isumrecl.1 𝑍 = (ℤ𝑀)
isumrecl.2 (𝜑𝑀 ∈ ℤ)
isumrecl.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumrecl.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
isumrecl.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
isumge0.6 ((𝜑𝑘𝑍) → 0 ≤ 𝐴)
Assertion
Ref Expression
isumge0 (𝜑 → 0 ≤ Σ𝑘𝑍 𝐴)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumge0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 isumrecl.1 . . 3 𝑍 = (ℤ𝑀)
2 isumrecl.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 isumrecl.3 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
4 isumrecl.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
54recnd 11147 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
6 isumrecl.5 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
71, 2, 3, 5, 6isumclim2 15667 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
8 fveq2 6828 . . . . . 6 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
98cbvsumv 15605 . . . . 5 Σ𝑗𝑍 (𝐹𝑗) = Σ𝑘𝑍 (𝐹𝑘)
103sumeq2dv 15611 . . . . 5 (𝜑 → Σ𝑘𝑍 (𝐹𝑘) = Σ𝑘𝑍 𝐴)
119, 10eqtrid 2780 . . . 4 (𝜑 → Σ𝑗𝑍 (𝐹𝑗) = Σ𝑘𝑍 𝐴)
127, 11breqtrrd 5121 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑗𝑍 (𝐹𝑗))
133, 4eqeltrd 2833 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
14 isumge0.6 . . . 4 ((𝜑𝑘𝑍) → 0 ≤ 𝐴)
1514, 3breqtrrd 5121 . . 3 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
161, 2, 12, 13, 15iserge0 15570 . 2 (𝜑 → 0 ≤ Σ𝑗𝑍 (𝐹𝑗))
1716, 11breqtrd 5119 1 (𝜑 → 0 ≤ Σ𝑘𝑍 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5093  dom cdm 5619  cfv 6486  cr 11012  0cc0 11013   + caddc 11016  cle 11154  cz 12475  cuz 12738  seqcseq 13910  cli 15393  Σcsu 15595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-rlim 15398  df-sum 15596
This theorem is referenced by:  mertenslem1  15793  mertenslem2  15794  rpnnen2lem12  16136  log2tlbnd  26883  esumcvg  34120  stirlinglem12  46207
  Copyright terms: Public domain W3C validator