Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidlrng Structured version   Visualization version   GIF version

Theorem lidlrng 45373
Description: A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
lidlrng ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)

Proof of Theorem lidlrng
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . 3 𝐿 = (LIdeal‘𝑅)
2 lidlabl.i . . 3 𝐼 = (𝑅s 𝑈)
31, 2lidlabl 45370 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Abel)
41, 2lidlmsgrp 45372 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Smgrp)
5 simpll 763 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑅 ∈ Ring)
61, 2lidlssbas 45368 . . . . . . . . . 10 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
76sseld 3916 . . . . . . . . 9 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
86sseld 3916 . . . . . . . . 9 (𝑈𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅)))
96sseld 3916 . . . . . . . . 9 (𝑈𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅)))
107, 8, 93anim123d 1441 . . . . . . . 8 (𝑈𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1110adantl 481 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1211imp 406 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))
13 eqid 2738 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2738 . . . . . . 7 (+g𝑅) = (+g𝑅)
15 eqid 2738 . . . . . . 7 (.r𝑅) = (.r𝑅)
1613, 14, 15ringdi 19720 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
175, 12, 16syl2anc 583 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
1813, 14, 15ringdir 19721 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
195, 12, 18syl2anc 583 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
2017, 19jca 511 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐))))
2120ralrimivvva 3115 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐))))
222, 15ressmulr 16943 . . . . . . . . . 10 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
2322eqcomd 2744 . . . . . . . . 9 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
24 eqidd 2739 . . . . . . . . 9 (𝑈𝐿𝑎 = 𝑎)
252, 14ressplusg 16926 . . . . . . . . . . 11 (𝑈𝐿 → (+g𝑅) = (+g𝐼))
2625eqcomd 2744 . . . . . . . . . 10 (𝑈𝐿 → (+g𝐼) = (+g𝑅))
2726oveqd 7272 . . . . . . . . 9 (𝑈𝐿 → (𝑏(+g𝐼)𝑐) = (𝑏(+g𝑅)𝑐))
2823, 24, 27oveq123d 7276 . . . . . . . 8 (𝑈𝐿 → (𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)))
2923oveqd 7272 . . . . . . . . 9 (𝑈𝐿 → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
3023oveqd 7272 . . . . . . . . 9 (𝑈𝐿 → (𝑎(.r𝐼)𝑐) = (𝑎(.r𝑅)𝑐))
3126, 29, 30oveq123d 7276 . . . . . . . 8 (𝑈𝐿 → ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
3228, 31eqeq12d 2754 . . . . . . 7 (𝑈𝐿 → ((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ↔ (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐))))
3326oveqd 7272 . . . . . . . . 9 (𝑈𝐿 → (𝑎(+g𝐼)𝑏) = (𝑎(+g𝑅)𝑏))
34 eqidd 2739 . . . . . . . . 9 (𝑈𝐿𝑐 = 𝑐)
3523, 33, 34oveq123d 7276 . . . . . . . 8 (𝑈𝐿 → ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐))
3623oveqd 7272 . . . . . . . . 9 (𝑈𝐿 → (𝑏(.r𝐼)𝑐) = (𝑏(.r𝑅)𝑐))
3726, 30, 36oveq123d 7276 . . . . . . . 8 (𝑈𝐿 → ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
3835, 37eqeq12d 2754 . . . . . . 7 (𝑈𝐿 → (((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐))))
3932, 38anbi12d 630 . . . . . 6 (𝑈𝐿 → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
4039adantl 481 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
4140ralbidv 3120 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
42412ralbidv 3122 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
4321, 42mpbird 256 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))))
44 eqid 2738 . . 3 (Base‘𝐼) = (Base‘𝐼)
45 eqid 2738 . . 3 (mulGrp‘𝐼) = (mulGrp‘𝐼)
46 eqid 2738 . . 3 (+g𝐼) = (+g𝐼)
47 eqid 2738 . . 3 (.r𝐼) = (.r𝐼)
4844, 45, 46, 47isrng 45322 . 2 (𝐼 ∈ Rng ↔ (𝐼 ∈ Abel ∧ (mulGrp‘𝐼) ∈ Smgrp ∧ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)))))
493, 4, 43, 48syl3anbrc 1341 1 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  .rcmulr 16889  Smgrpcsgrp 18289  Abelcabl 19302  mulGrpcmgp 19635  Ringcrg 19698  LIdealclidl 20347  Rngcrng 45320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rng0 45321
This theorem is referenced by:  zlidlring  45374  uzlidlring  45375  2zrng  45381
  Copyright terms: Public domain W3C validator