Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidlrng Structured version   Visualization version   GIF version

Theorem lidlrng 45158
Description: A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
lidlrng ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)

Proof of Theorem lidlrng
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . 3 𝐿 = (LIdeal‘𝑅)
2 lidlabl.i . . 3 𝐼 = (𝑅s 𝑈)
31, 2lidlabl 45155 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Abel)
41, 2lidlmsgrp 45157 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Smgrp)
5 simpll 767 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑅 ∈ Ring)
61, 2lidlssbas 45153 . . . . . . . . . 10 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
76sseld 3900 . . . . . . . . 9 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
86sseld 3900 . . . . . . . . 9 (𝑈𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅)))
96sseld 3900 . . . . . . . . 9 (𝑈𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅)))
107, 8, 93anim123d 1445 . . . . . . . 8 (𝑈𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1110adantl 485 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1211imp 410 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))
13 eqid 2737 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2737 . . . . . . 7 (+g𝑅) = (+g𝑅)
15 eqid 2737 . . . . . . 7 (.r𝑅) = (.r𝑅)
1613, 14, 15ringdi 19584 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
175, 12, 16syl2anc 587 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
1813, 14, 15ringdir 19585 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
195, 12, 18syl2anc 587 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
2017, 19jca 515 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐))))
2120ralrimivvva 3113 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐))))
222, 15ressmulr 16848 . . . . . . . . . 10 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
2322eqcomd 2743 . . . . . . . . 9 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
24 eqidd 2738 . . . . . . . . 9 (𝑈𝐿𝑎 = 𝑎)
252, 14ressplusg 16834 . . . . . . . . . . 11 (𝑈𝐿 → (+g𝑅) = (+g𝐼))
2625eqcomd 2743 . . . . . . . . . 10 (𝑈𝐿 → (+g𝐼) = (+g𝑅))
2726oveqd 7230 . . . . . . . . 9 (𝑈𝐿 → (𝑏(+g𝐼)𝑐) = (𝑏(+g𝑅)𝑐))
2823, 24, 27oveq123d 7234 . . . . . . . 8 (𝑈𝐿 → (𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)))
2923oveqd 7230 . . . . . . . . 9 (𝑈𝐿 → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
3023oveqd 7230 . . . . . . . . 9 (𝑈𝐿 → (𝑎(.r𝐼)𝑐) = (𝑎(.r𝑅)𝑐))
3126, 29, 30oveq123d 7234 . . . . . . . 8 (𝑈𝐿 → ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
3228, 31eqeq12d 2753 . . . . . . 7 (𝑈𝐿 → ((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ↔ (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐))))
3326oveqd 7230 . . . . . . . . 9 (𝑈𝐿 → (𝑎(+g𝐼)𝑏) = (𝑎(+g𝑅)𝑏))
34 eqidd 2738 . . . . . . . . 9 (𝑈𝐿𝑐 = 𝑐)
3523, 33, 34oveq123d 7234 . . . . . . . 8 (𝑈𝐿 → ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐))
3623oveqd 7230 . . . . . . . . 9 (𝑈𝐿 → (𝑏(.r𝐼)𝑐) = (𝑏(.r𝑅)𝑐))
3726, 30, 36oveq123d 7234 . . . . . . . 8 (𝑈𝐿 → ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
3835, 37eqeq12d 2753 . . . . . . 7 (𝑈𝐿 → (((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐))))
3932, 38anbi12d 634 . . . . . 6 (𝑈𝐿 → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
4039adantl 485 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
4140ralbidv 3118 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
42412ralbidv 3120 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
4321, 42mpbird 260 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))))
44 eqid 2737 . . 3 (Base‘𝐼) = (Base‘𝐼)
45 eqid 2737 . . 3 (mulGrp‘𝐼) = (mulGrp‘𝐼)
46 eqid 2737 . . 3 (+g𝐼) = (+g𝐼)
47 eqid 2737 . . 3 (.r𝐼) = (.r𝐼)
4844, 45, 46, 47isrng 45107 . 2 (𝐼 ∈ Rng ↔ (𝐼 ∈ Abel ∧ (mulGrp‘𝐼) ∈ Smgrp ∧ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)))))
493, 4, 43, 48syl3anbrc 1345 1 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  cfv 6380  (class class class)co 7213  Basecbs 16760  s cress 16784  +gcplusg 16802  .rcmulr 16803  Smgrpcsgrp 18162  Abelcabl 19171  mulGrpcmgp 19504  Ringcrg 19562  LIdealclidl 20207  Rngcrng 45105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-subrg 19798  df-lmod 19901  df-lss 19969  df-sra 20209  df-rgmod 20210  df-lidl 20211  df-rng0 45106
This theorem is referenced by:  zlidlring  45159  uzlidlring  45160  2zrng  45166
  Copyright terms: Public domain W3C validator