MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpscmatgsummon Structured version   Visualization version   GIF version

Theorem chpscmatgsummon 21559
Description: The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of scaled monomials. (Contributed by AV, 2-Sep-2019.)
Hypotheses
Ref Expression
chp0mat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chp0mat.p 𝑃 = (Poly1𝑅)
chp0mat.a 𝐴 = (𝑁 Mat 𝑅)
chp0mat.x 𝑋 = (var1𝑅)
chp0mat.g 𝐺 = (mulGrp‘𝑃)
chp0mat.m = (.g𝐺)
chpscmat.d 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
chpscmat.s 𝑆 = (algSc‘𝑃)
chpscmat.m = (-g𝑃)
chpscmatgsum.f 𝐹 = (.g𝑃)
chpscmatgsum.h 𝐻 = (mulGrp‘𝑅)
chpscmatgsum.e 𝐸 = (.g𝐻)
chpscmatgsum.i 𝐼 = (invg𝑅)
chpscmatgsum.s · = ( ·𝑠𝑃)
chpscmatgsum.z 𝑍 = (.g𝑅)
Assertion
Ref Expression
chpscmatgsummon (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 𝑋)))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑋,𝑗   𝐴,𝑐,𝑚   𝐷,𝑛   𝑛,𝐸   𝑛,𝐼   𝑀,𝑐,𝑖,𝑗,𝑚,𝑛   𝑁,𝑐,𝑚,𝑛   𝑃,𝑛   𝑅,𝑐,𝑚,𝑛   𝑆,𝑛   𝐷,𝑙   𝐹,𝑙   𝐼,𝑙   𝐽,𝑙,𝑛   𝑀,𝑙   𝑁,𝑙   𝑃,𝑙   𝑅,𝑙   𝑆,𝑙   𝑋,𝑙   ,𝑙
Allowed substitution hints:   𝐴(𝑛,𝑙)   𝐶(𝑖,𝑗,𝑚,𝑛,𝑐,𝑙)   𝐷(𝑖,𝑗,𝑚,𝑐)   𝑃(𝑚,𝑐)   𝑆(𝑖,𝑗,𝑚,𝑐)   · (𝑖,𝑗,𝑚,𝑛,𝑐,𝑙)   𝐸(𝑖,𝑗,𝑚,𝑐,𝑙)   (𝑖,𝑗,𝑚,𝑛,𝑐)   𝐹(𝑖,𝑗,𝑚,𝑛,𝑐)   𝐺(𝑖,𝑗,𝑚,𝑛,𝑐,𝑙)   𝐻(𝑖,𝑗,𝑚,𝑛,𝑐,𝑙)   𝐼(𝑖,𝑗,𝑚,𝑐)   𝐽(𝑖,𝑗,𝑚,𝑐)   (𝑖,𝑗,𝑚,𝑛,𝑐,𝑙)   𝑋(𝑚,𝑛,𝑐)   𝑍(𝑖,𝑗,𝑚,𝑛,𝑐,𝑙)

Proof of Theorem chpscmatgsummon
StepHypRef Expression
1 chp0mat.c . . 3 𝐶 = (𝑁 CharPlyMat 𝑅)
2 chp0mat.p . . 3 𝑃 = (Poly1𝑅)
3 chp0mat.a . . 3 𝐴 = (𝑁 Mat 𝑅)
4 chp0mat.x . . 3 𝑋 = (var1𝑅)
5 chp0mat.g . . 3 𝐺 = (mulGrp‘𝑃)
6 chp0mat.m . . 3 = (.g𝐺)
7 chpscmat.d . . 3 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
8 chpscmat.s . . 3 𝑆 = (algSc‘𝑃)
9 chpscmat.m . . 3 = (-g𝑃)
10 chpscmatgsum.f . . 3 𝐹 = (.g𝑃)
11 chpscmatgsum.h . . 3 𝐻 = (mulGrp‘𝑅)
12 chpscmatgsum.e . . 3 𝐸 = (.g𝐻)
13 chpscmatgsum.i . . 3 𝐼 = (invg𝑅)
14 chpscmatgsum.s . . 3 · = ( ·𝑠𝑃)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14chpscmatgsumbin 21558 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋))))))
16 crngring 19391 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1716adantl 485 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
182ply1lmod 20990 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
1917, 18syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ LMod)
2019ad2antrr 725 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝑃 ∈ LMod)
2111ringmgp 19385 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝐻 ∈ Mnd)
2217, 21syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐻 ∈ Mnd)
2322ad2antrr 725 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝐻 ∈ Mnd)
24 fznn0sub 13001 . . . . . . . . 9 (𝑙 ∈ (0...(♯‘𝑁)) → ((♯‘𝑁) − 𝑙) ∈ ℕ0)
2524adantl 485 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → ((♯‘𝑁) − 𝑙) ∈ ℕ0)
26 ringgrp 19384 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2716, 26syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Grp)
2827adantl 485 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Grp)
29 simp2 1134 . . . . . . . . . . . . 13 ((𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽)) → 𝐽𝑁)
30 elrabi 3598 . . . . . . . . . . . . . . 15 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → 𝑀 ∈ (Base‘𝐴))
3130, 7eleq2s 2870 . . . . . . . . . . . . . 14 (𝑀𝐷𝑀 ∈ (Base‘𝐴))
32313ad2ant1 1130 . . . . . . . . . . . . 13 ((𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽)) → 𝑀 ∈ (Base‘𝐴))
3329, 29, 323jca 1125 . . . . . . . . . . . 12 ((𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽)) → (𝐽𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)))
3433adantl 485 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐽𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)))
35 eqid 2758 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
363, 35matecl 21139 . . . . . . . . . . 11 ((𝐽𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)) → (𝐽𝑀𝐽) ∈ (Base‘𝑅))
3734, 36syl 17 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐽𝑀𝐽) ∈ (Base‘𝑅))
3835, 13grpinvcl 18232 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ (𝐽𝑀𝐽) ∈ (Base‘𝑅)) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅))
3928, 37, 38syl2an2r 684 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅))
4039adantr 484 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅))
4111, 35mgpbas 19327 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝐻)
4241, 12mulgnn0cl 18325 . . . . . . . 8 ((𝐻 ∈ Mnd ∧ ((♯‘𝑁) − 𝑙) ∈ ℕ0 ∧ (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅)) → (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘𝑅))
4323, 25, 40, 42syl3anc 1368 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘𝑅))
442ply1sca 20991 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
4544adantl 485 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
4645eqcomd 2764 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝑃) = 𝑅)
4746fveq2d 6667 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
4847ad2antrr 725 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
4943, 48eleqtrrd 2855 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘(Scalar‘𝑃)))
50 hashcl 13780 . . . . . . . 8 (𝑁 ∈ Fin → (♯‘𝑁) ∈ ℕ0)
5150ad2antrr 725 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (♯‘𝑁) ∈ ℕ0)
52 elfzelz 12969 . . . . . . 7 (𝑙 ∈ (0...(♯‘𝑁)) → 𝑙 ∈ ℤ)
53 bccl 13745 . . . . . . 7 (((♯‘𝑁) ∈ ℕ0𝑙 ∈ ℤ) → ((♯‘𝑁)C𝑙) ∈ ℕ0)
5451, 52, 53syl2an 598 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → ((♯‘𝑁)C𝑙) ∈ ℕ0)
552ply1ring 20986 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
565ringmgp 19385 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
5716, 55, 563syl 18 . . . . . . . . 9 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
5857adantl 485 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐺 ∈ Mnd)
5958ad2antrr 725 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝐺 ∈ Mnd)
60 elfznn0 13062 . . . . . . . 8 (𝑙 ∈ (0...(♯‘𝑁)) → 𝑙 ∈ ℕ0)
6160adantl 485 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝑙 ∈ ℕ0)
62 eqid 2758 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
634, 2, 62vr1cl 20955 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
6417, 63syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃))
6564ad2antrr 725 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝑋 ∈ (Base‘𝑃))
665, 62mgpbas 19327 . . . . . . . 8 (Base‘𝑃) = (Base‘𝐺)
6766, 6mulgnn0cl 18325 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑙 ∈ ℕ0𝑋 ∈ (Base‘𝑃)) → (𝑙 𝑋) ∈ (Base‘𝑃))
6859, 61, 65, 67syl3anc 1368 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (𝑙 𝑋) ∈ (Base‘𝑃))
69 eqid 2758 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
70 eqid 2758 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
71 eqid 2758 . . . . . . 7 (.g‘(Scalar‘𝑃)) = (.g‘(Scalar‘𝑃))
7262, 69, 14, 70, 10, 71lmodvsmmulgdi 19751 . . . . . 6 ((𝑃 ∈ LMod ∧ ((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘(Scalar‘𝑃)) ∧ ((♯‘𝑁)C𝑙) ∈ ℕ0 ∧ (𝑙 𝑋) ∈ (Base‘𝑃))) → (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋))) = ((((♯‘𝑁)C𝑙)(.g‘(Scalar‘𝑃))(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 𝑋)))
7320, 49, 54, 68, 72syl13anc 1369 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋))) = ((((♯‘𝑁)C𝑙)(.g‘(Scalar‘𝑃))(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 𝑋)))
74 chpscmatgsum.z . . . . . . . . 9 𝑍 = (.g𝑅)
7545fveq2d 6667 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (.g𝑅) = (.g‘(Scalar‘𝑃)))
7674, 75syl5req 2806 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (.g‘(Scalar‘𝑃)) = 𝑍)
7776ad2antrr 725 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (.g‘(Scalar‘𝑃)) = 𝑍)
7877oveqd 7173 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁)C𝑙)(.g‘(Scalar‘𝑃))(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) = (((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))))
7978oveq1d 7171 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → ((((♯‘𝑁)C𝑙)(.g‘(Scalar‘𝑃))(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 𝑋)) = ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 𝑋)))
8073, 79eqtrd 2793 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋))) = ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 𝑋)))
8180mpteq2dva 5131 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋)))) = (𝑙 ∈ (0...(♯‘𝑁)) ↦ ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 𝑋))))
8281oveq2d 7172 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋))))) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 𝑋)))))
8315, 82eqtrd 2793 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070  wrex 3071  {crab 3074  ifcif 4423  cmpt 5116  cfv 6340  (class class class)co 7156  Fincfn 8540  0cc0 10588  cmin 10921  0cn0 11947  cz 12033  ...cfz 12952  Ccbc 13725  chash 13753  Basecbs 16555  Scalarcsca 16640   ·𝑠 cvsca 16641  0gc0g 16785   Σg cgsu 16786  Mndcmnd 17991  Grpcgrp 18183  invgcminusg 18184  -gcsg 18185  .gcmg 18305  mulGrpcmgp 19321  Ringcrg 19379  CRingccrg 19380  LModclmod 19716  algSccascl 20631  var1cv1 20914  Poly1cpl1 20915   Mat cmat 21121   CharPlyMat cchpmat 21540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-addf 10667  ax-mulf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-ofr 7412  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-er 8305  df-map 8424  df-pm 8425  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-sup 8952  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-xnn0 12020  df-z 12034  df-dec 12151  df-uz 12296  df-rp 12444  df-fz 12953  df-fzo 13096  df-seq 13432  df-exp 13493  df-fac 13697  df-bc 13726  df-hash 13754  df-word 13927  df-lsw 13975  df-concat 13983  df-s1 14010  df-substr 14063  df-pfx 14093  df-splice 14172  df-reverse 14181  df-s2 14270  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-mulr 16651  df-starv 16652  df-sca 16653  df-vsca 16654  df-ip 16655  df-tset 16656  df-ple 16657  df-ds 16659  df-unif 16660  df-hom 16661  df-cco 16662  df-0g 16787  df-gsum 16788  df-prds 16793  df-pws 16795  df-mre 16929  df-mrc 16930  df-acs 16932  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-mhm 18036  df-submnd 18037  df-efmnd 18114  df-grp 18186  df-minusg 18187  df-sbg 18188  df-mulg 18306  df-subg 18357  df-ghm 18437  df-gim 18480  df-cntz 18528  df-oppg 18555  df-symg 18577  df-pmtr 18651  df-psgn 18700  df-cmn 18989  df-abl 18990  df-mgp 19322  df-ur 19334  df-srg 19338  df-ring 19381  df-cring 19382  df-oppr 19458  df-dvdsr 19476  df-unit 19477  df-invr 19507  df-dvr 19518  df-rnghom 19552  df-drng 19586  df-subrg 19615  df-lmod 19718  df-lss 19786  df-sra 20026  df-rgmod 20027  df-cnfld 20181  df-zring 20253  df-zrh 20287  df-dsmm 20511  df-frlm 20526  df-assa 20632  df-ascl 20634  df-psr 20685  df-mvr 20686  df-mpl 20687  df-opsr 20689  df-psr1 20918  df-vr1 20919  df-ply1 20920  df-mamu 21100  df-mat 21122  df-mdet 21299  df-mat2pmat 21421  df-chpmat 21541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator