Proof of Theorem chpscmatgsummon
Step | Hyp | Ref
| Expression |
1 | | chp0mat.c |
. . 3
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
2 | | chp0mat.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
3 | | chp0mat.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
4 | | chp0mat.x |
. . 3
⊢ 𝑋 = (var1‘𝑅) |
5 | | chp0mat.g |
. . 3
⊢ 𝐺 = (mulGrp‘𝑃) |
6 | | chp0mat.m |
. . 3
⊢ ↑ =
(.g‘𝐺) |
7 | | chpscmat.d |
. . 3
⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} |
8 | | chpscmat.s |
. . 3
⊢ 𝑆 = (algSc‘𝑃) |
9 | | chpscmat.m |
. . 3
⊢ − =
(-g‘𝑃) |
10 | | chpscmatgsum.f |
. . 3
⊢ 𝐹 = (.g‘𝑃) |
11 | | chpscmatgsum.h |
. . 3
⊢ 𝐻 = (mulGrp‘𝑅) |
12 | | chpscmatgsum.e |
. . 3
⊢ 𝐸 = (.g‘𝐻) |
13 | | chpscmatgsum.i |
. . 3
⊢ 𝐼 = (invg‘𝑅) |
14 | | chpscmatgsum.s |
. . 3
⊢ · = (
·𝑠 ‘𝑃) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14 | chpscmatgsumbin 21993 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶‘𝑀) = (𝑃 Σg (𝑙 ∈
(0...(♯‘𝑁))
↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋)))))) |
16 | | crngring 19795 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
17 | 16 | adantl 482 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
18 | 2 | ply1lmod 21423 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ LMod) |
20 | 19 | ad2antrr 723 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝑃 ∈ LMod) |
21 | 11 | ringmgp 19789 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝐻 ∈ Mnd) |
22 | 17, 21 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐻 ∈ Mnd) |
23 | 22 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝐻 ∈ Mnd) |
24 | | fznn0sub 13288 |
. . . . . . . . 9
⊢ (𝑙 ∈
(0...(♯‘𝑁))
→ ((♯‘𝑁)
− 𝑙) ∈
ℕ0) |
25 | 24 | adantl 482 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → ((♯‘𝑁) − 𝑙) ∈
ℕ0) |
26 | | ringgrp 19788 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
27 | 16, 26 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Grp) |
28 | 27 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Grp) |
29 | | simp2 1136 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽)) → 𝐽 ∈ 𝑁) |
30 | | elrabi 3618 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} → 𝑀 ∈ (Base‘𝐴)) |
31 | 30, 7 | eleq2s 2857 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ 𝐷 → 𝑀 ∈ (Base‘𝐴)) |
32 | 31 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽)) → 𝑀 ∈ (Base‘𝐴)) |
33 | 29, 29, 32 | 3jca 1127 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽)) → (𝐽 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴))) |
34 | 33 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐽 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴))) |
35 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) |
36 | 3, 35 | matecl 21574 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐽𝑀𝐽) ∈ (Base‘𝑅)) |
37 | 34, 36 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐽𝑀𝐽) ∈ (Base‘𝑅)) |
38 | 35, 13 | grpinvcl 18627 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Grp ∧ (𝐽𝑀𝐽) ∈ (Base‘𝑅)) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅)) |
39 | 28, 37, 38 | syl2an2r 682 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅)) |
40 | 39 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅)) |
41 | 11, 35 | mgpbas 19726 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝐻) |
42 | 41, 12 | mulgnn0cl 18720 |
. . . . . . . 8
⊢ ((𝐻 ∈ Mnd ∧
((♯‘𝑁) −
𝑙) ∈
ℕ0 ∧ (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅)) → (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘𝑅)) |
43 | 23, 25, 40, 42 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘𝑅)) |
44 | 2 | ply1sca 21424 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃)) |
45 | 44 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃)) |
46 | 45 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(Scalar‘𝑃) = 𝑅) |
47 | 46 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
48 | 47 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
49 | 43, 48 | eleqtrrd 2842 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘(Scalar‘𝑃))) |
50 | | hashcl 14071 |
. . . . . . . 8
⊢ (𝑁 ∈ Fin →
(♯‘𝑁) ∈
ℕ0) |
51 | 50 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (♯‘𝑁) ∈
ℕ0) |
52 | | elfzelz 13256 |
. . . . . . 7
⊢ (𝑙 ∈
(0...(♯‘𝑁))
→ 𝑙 ∈
ℤ) |
53 | | bccl 14036 |
. . . . . . 7
⊢
(((♯‘𝑁)
∈ ℕ0 ∧ 𝑙 ∈ ℤ) → ((♯‘𝑁)C𝑙) ∈
ℕ0) |
54 | 51, 52, 53 | syl2an 596 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → ((♯‘𝑁)C𝑙) ∈
ℕ0) |
55 | 2 | ply1ring 21419 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
56 | 5 | ringmgp 19789 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Ring → 𝐺 ∈ Mnd) |
57 | 16, 55, 56 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝐺 ∈ Mnd) |
58 | 57 | adantl 482 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐺 ∈ Mnd) |
59 | 58 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝐺 ∈ Mnd) |
60 | | elfznn0 13349 |
. . . . . . . 8
⊢ (𝑙 ∈
(0...(♯‘𝑁))
→ 𝑙 ∈
ℕ0) |
61 | 60 | adantl 482 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝑙 ∈ ℕ0) |
62 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑃) =
(Base‘𝑃) |
63 | 4, 2, 62 | vr1cl 21388 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
64 | 17, 63 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃)) |
65 | 64 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝑋 ∈ (Base‘𝑃)) |
66 | 5, 62 | mgpbas 19726 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝐺) |
67 | 66, 6 | mulgnn0cl 18720 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑙 ∈ ℕ0
∧ 𝑋 ∈
(Base‘𝑃)) →
(𝑙 ↑ 𝑋) ∈ (Base‘𝑃)) |
68 | 59, 61, 65, 67 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (𝑙 ↑ 𝑋) ∈ (Base‘𝑃)) |
69 | | eqid 2738 |
. . . . . . 7
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
70 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
71 | | eqid 2738 |
. . . . . . 7
⊢
(.g‘(Scalar‘𝑃)) =
(.g‘(Scalar‘𝑃)) |
72 | 62, 69, 14, 70, 10, 71 | lmodvsmmulgdi 20158 |
. . . . . 6
⊢ ((𝑃 ∈ LMod ∧
((((♯‘𝑁)
− 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘(Scalar‘𝑃)) ∧ ((♯‘𝑁)C𝑙) ∈ ℕ0 ∧ (𝑙 ↑ 𝑋) ∈ (Base‘𝑃))) → (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋))) = ((((♯‘𝑁)C𝑙)(.g‘(Scalar‘𝑃))(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 ↑ 𝑋))) |
73 | 20, 49, 54, 68, 72 | syl13anc 1371 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋))) = ((((♯‘𝑁)C𝑙)(.g‘(Scalar‘𝑃))(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 ↑ 𝑋))) |
74 | | chpscmatgsum.z |
. . . . . . . . 9
⊢ 𝑍 = (.g‘𝑅) |
75 | 45 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(.g‘𝑅) =
(.g‘(Scalar‘𝑃))) |
76 | 74, 75 | eqtr2id 2791 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(.g‘(Scalar‘𝑃)) = 𝑍) |
77 | 76 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) →
(.g‘(Scalar‘𝑃)) = 𝑍) |
78 | 77 | oveqd 7292 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁)C𝑙)(.g‘(Scalar‘𝑃))(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) = (((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))) |
79 | 78 | oveq1d 7290 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → ((((♯‘𝑁)C𝑙)(.g‘(Scalar‘𝑃))(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 ↑ 𝑋)) = ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 ↑ 𝑋))) |
80 | 73, 79 | eqtrd 2778 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋))) = ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 ↑ 𝑋))) |
81 | 80 | mpteq2dva 5174 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋)))) = (𝑙 ∈ (0...(♯‘𝑁)) ↦ ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 ↑ 𝑋)))) |
82 | 81 | oveq2d 7291 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑃 Σg (𝑙 ∈
(0...(♯‘𝑁))
↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋))))) = (𝑃 Σg (𝑙 ∈
(0...(♯‘𝑁))
↦ ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 ↑ 𝑋))))) |
83 | 15, 82 | eqtrd 2778 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶‘𝑀) = (𝑃 Σg (𝑙 ∈
(0...(♯‘𝑁))
↦ ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 ↑ 𝑋))))) |