Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvp Structured version   Visualization version   GIF version

Theorem lcvp 39079
Description: Covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 32347 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvp.s 𝑆 = (LSubSp‘𝑊)
lcvp.p = (LSSum‘𝑊)
lcvp.o 0 = (0g𝑊)
lcvp.a 𝐴 = (LSAtoms‘𝑊)
lcvp.c 𝐶 = ( ⋖L𝑊)
lcvp.w (𝜑𝑊 ∈ LVec)
lcvp.u (𝜑𝑈𝑆)
lcvp.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lcvp (𝜑 → ((𝑈𝑄) = { 0 } ↔ 𝑈𝐶(𝑈 𝑄)))

Proof of Theorem lcvp
StepHypRef Expression
1 lcvp.o . . 3 0 = (0g𝑊)
2 lcvp.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lcvp.a . . 3 𝐴 = (LSAtoms‘𝑊)
4 lcvp.c . . 3 𝐶 = ( ⋖L𝑊)
5 lcvp.w . . 3 (𝜑𝑊 ∈ LVec)
6 lveclmod 21035 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
8 lcvp.u . . . 4 (𝜑𝑈𝑆)
9 lcvp.q . . . . 5 (𝜑𝑄𝐴)
102, 3, 7, 9lsatlssel 39036 . . . 4 (𝜑𝑄𝑆)
112lssincl 20893 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑄𝑆) → (𝑈𝑄) ∈ 𝑆)
127, 8, 10, 11syl3anc 1373 . . 3 (𝜑 → (𝑈𝑄) ∈ 𝑆)
131, 2, 3, 4, 5, 12, 9lsatcveq0 39071 . 2 (𝜑 → ((𝑈𝑄)𝐶𝑄 ↔ (𝑈𝑄) = { 0 }))
14 lcvp.p . . 3 = (LSSum‘𝑊)
152, 14, 4, 7, 8, 10lcvexch 39078 . 2 (𝜑 → ((𝑈𝑄)𝐶𝑄𝑈𝐶(𝑈 𝑄)))
1613, 15bitr3d 281 1 (𝜑 → ((𝑈𝑄) = { 0 } ↔ 𝑈𝐶(𝑈 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cin 3896  {csn 4571   class class class wbr 5086  cfv 6476  (class class class)co 7341  0gc0g 17338  LSSumclsm 19541  LModclmod 20788  LSubSpclss 20859  LVecclvec 21031  LSAtomsclsa 39013  L clcv 39057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-0g 17340  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19224  df-oppg 19253  df-lsm 19543  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-drng 20641  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lvec 21032  df-lsatoms 39015  df-lcv 39058
This theorem is referenced by:  lsatexch  39082  lsatnle  39083  lsatcv0eq  39086  lsatcvatlem  39088
  Copyright terms: Public domain W3C validator