| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pipos | Structured version Visualization version GIF version | ||
| Description: π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| Ref | Expression |
|---|---|
| pipos | ⊢ 0 < π |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2pos 12341 | . 2 ⊢ 0 < 2 | |
| 2 | pigt2lt4 26414 | . . 3 ⊢ (2 < π ∧ π < 4) | |
| 3 | 2 | simpli 483 | . 2 ⊢ 2 < π |
| 4 | 0re 11235 | . . 3 ⊢ 0 ∈ ℝ | |
| 5 | 2re 12312 | . . 3 ⊢ 2 ∈ ℝ | |
| 6 | pire 26416 | . . 3 ⊢ π ∈ ℝ | |
| 7 | 4, 5, 6 | lttri 11359 | . 2 ⊢ ((0 < 2 ∧ 2 < π) → 0 < π) |
| 8 | 1, 3, 7 | mp2an 692 | 1 ⊢ 0 < π |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5119 0cc0 11127 < clt 11267 2c2 12293 4c4 12295 πcpi 16080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-ioc 13365 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-seq 14018 df-exp 14078 df-fac 14290 df-bc 14319 df-hash 14347 df-shft 15084 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-limsup 15485 df-clim 15502 df-rlim 15503 df-sum 15701 df-ef 16081 df-sin 16083 df-cos 16084 df-pi 16086 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-lp 23072 df-perf 23073 df-cn 23163 df-cnp 23164 df-haus 23251 df-tx 23498 df-hmeo 23691 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-xms 24257 df-ms 24258 df-tms 24259 df-cncf 24820 df-limc 25817 df-dv 25818 |
| This theorem is referenced by: pine0 26419 pirp 26420 sinhalfpilem 26422 sincos4thpi 26472 sincos6thpi 26475 pigt3 26477 sineq0 26483 coseq1 26484 cosq34lt1 26486 efeq1 26487 cosne0 26488 cos0pilt1 26491 recosf1o 26494 tanord1 26496 efif1olem2 26502 efif1olem4 26504 relogrn 26520 logi 26546 logneg 26547 eflogeq 26561 logneg2 26574 logf1o2 26609 root1eq1 26715 logbrec 26742 ang180lem1 26769 ang180lem2 26770 ang180lem3 26771 asin1 26854 basellem4 27044 itgexpif 34584 bj-pinftyccb 37185 bj-minftyccb 37189 bj-pinftynminfty 37191 tan2h 37582 asin1half 42347 acos1half 42348 proot1ex 43167 isosctrlem1ALT 44906 sineq0ALT 44909 negpilt0 45257 coseq0 45841 sinaover2ne0 45845 itgsin0pilem1 45927 itgsinexplem1 45931 wallispilem2 46043 wallispi 46047 stirlinglem15 46065 stirlingr 46067 dirker2re 46069 dirkerdenne0 46070 dirkerval2 46071 dirkerre 46072 dirkertrigeqlem1 46075 dirkertrigeqlem2 46076 dirkertrigeqlem3 46077 dirkertrigeq 46078 dirkeritg 46079 dirkercncflem1 46080 dirkercncflem2 46081 dirkercncflem4 46083 fourierdlem16 46100 fourierdlem21 46105 fourierdlem22 46106 fourierdlem24 46108 fourierdlem62 46145 fourierdlem66 46149 fourierdlem83 46166 fourierdlem94 46177 fourierdlem95 46178 fourierdlem102 46185 fourierdlem103 46186 fourierdlem104 46187 fourierdlem111 46194 fourierdlem112 46195 fourierdlem113 46196 fourierdlem114 46197 sqwvfoura 46205 sqwvfourb 46206 fourierswlem 46207 fouriersw 46208 |
| Copyright terms: Public domain | W3C validator |