Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pipos | Structured version Visualization version GIF version |
Description: π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
Ref | Expression |
---|---|
pipos | ⊢ 0 < π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2pos 12085 | . 2 ⊢ 0 < 2 | |
2 | pigt2lt4 25622 | . . 3 ⊢ (2 < π ∧ π < 4) | |
3 | 2 | simpli 484 | . 2 ⊢ 2 < π |
4 | 0re 10986 | . . 3 ⊢ 0 ∈ ℝ | |
5 | 2re 12056 | . . 3 ⊢ 2 ∈ ℝ | |
6 | pire 25624 | . . 3 ⊢ π ∈ ℝ | |
7 | 4, 5, 6 | lttri 11110 | . 2 ⊢ ((0 < 2 ∧ 2 < π) → 0 < π) |
8 | 1, 3, 7 | mp2an 689 | 1 ⊢ 0 < π |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5075 0cc0 10880 < clt 11018 2c2 12037 4c4 12039 πcpi 15785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-inf2 9408 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 ax-addf 10959 ax-mulf 10960 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-iin 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-isom 6446 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-of 7542 df-om 7722 df-1st 7840 df-2nd 7841 df-supp 7987 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-2o 8307 df-er 8507 df-map 8626 df-pm 8627 df-ixp 8695 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-fsupp 9138 df-fi 9179 df-sup 9210 df-inf 9211 df-oi 9278 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-dec 12447 df-uz 12592 df-q 12698 df-rp 12740 df-xneg 12857 df-xadd 12858 df-xmul 12859 df-ioo 13092 df-ioc 13093 df-ico 13094 df-icc 13095 df-fz 13249 df-fzo 13392 df-fl 13521 df-seq 13731 df-exp 13792 df-fac 13997 df-bc 14026 df-hash 14054 df-shft 14787 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-limsup 15189 df-clim 15206 df-rlim 15207 df-sum 15407 df-ef 15786 df-sin 15788 df-cos 15789 df-pi 15791 df-struct 16857 df-sets 16874 df-slot 16892 df-ndx 16904 df-base 16922 df-ress 16951 df-plusg 16984 df-mulr 16985 df-starv 16986 df-sca 16987 df-vsca 16988 df-ip 16989 df-tset 16990 df-ple 16991 df-ds 16993 df-unif 16994 df-hom 16995 df-cco 16996 df-rest 17142 df-topn 17143 df-0g 17161 df-gsum 17162 df-topgen 17163 df-pt 17164 df-prds 17167 df-xrs 17222 df-qtop 17227 df-imas 17228 df-xps 17230 df-mre 17304 df-mrc 17305 df-acs 17307 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-submnd 18440 df-mulg 18710 df-cntz 18932 df-cmn 19397 df-psmet 20598 df-xmet 20599 df-met 20600 df-bl 20601 df-mopn 20602 df-fbas 20603 df-fg 20604 df-cnfld 20607 df-top 22052 df-topon 22069 df-topsp 22091 df-bases 22105 df-cld 22179 df-ntr 22180 df-cls 22181 df-nei 22258 df-lp 22296 df-perf 22297 df-cn 22387 df-cnp 22388 df-haus 22475 df-tx 22722 df-hmeo 22915 df-fil 23006 df-fm 23098 df-flim 23099 df-flf 23100 df-xms 23482 df-ms 23483 df-tms 23484 df-cncf 24050 df-limc 25039 df-dv 25040 |
This theorem is referenced by: pirp 25627 sinhalfpilem 25629 sincos4thpi 25679 sincos6thpi 25681 pigt3 25683 sineq0 25689 coseq1 25690 cosq34lt1 25692 efeq1 25693 cosne0 25694 cos0pilt1 25697 recosf1o 25700 tanord1 25702 efif1olem2 25708 efif1olem4 25710 relogrn 25726 logneg 25752 eflogeq 25766 logneg2 25779 logf1o2 25814 root1eq1 25917 logbrec 25941 ang180lem1 25968 ang180lem2 25969 ang180lem3 25970 asin1 26053 basellem4 26242 itgexpif 32595 logi 33709 bj-pinftyccb 35401 bj-minftyccb 35405 bj-pinftynminfty 35407 tan2h 35778 acos1half 40177 proot1ex 41033 isosctrlem1ALT 42561 sineq0ALT 42564 negpilt0 42826 coseq0 43412 sinaover2ne0 43416 itgsin0pilem1 43498 itgsinexplem1 43502 wallispilem2 43614 wallispi 43618 stirlinglem15 43636 stirlingr 43638 dirker2re 43640 dirkerdenne0 43641 dirkerval2 43642 dirkerre 43643 dirkertrigeqlem1 43646 dirkertrigeqlem2 43647 dirkertrigeqlem3 43648 dirkertrigeq 43649 dirkeritg 43650 dirkercncflem1 43651 dirkercncflem2 43652 dirkercncflem4 43654 fourierdlem16 43671 fourierdlem21 43676 fourierdlem22 43677 fourierdlem24 43679 fourierdlem62 43716 fourierdlem66 43720 fourierdlem83 43737 fourierdlem94 43748 fourierdlem95 43749 fourierdlem102 43756 fourierdlem103 43757 fourierdlem104 43758 fourierdlem111 43765 fourierdlem112 43766 fourierdlem113 43767 fourierdlem114 43768 sqwvfoura 43776 sqwvfourb 43777 fourierswlem 43778 fouriersw 43779 |
Copyright terms: Public domain | W3C validator |