| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pipos | Structured version Visualization version GIF version | ||
| Description: π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| Ref | Expression |
|---|---|
| pipos | ⊢ 0 < π |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2pos 12336 | . 2 ⊢ 0 < 2 | |
| 2 | pigt2lt4 26403 | . . 3 ⊢ (2 < π ∧ π < 4) | |
| 3 | 2 | simpli 483 | . 2 ⊢ 2 < π |
| 4 | 0re 11230 | . . 3 ⊢ 0 ∈ ℝ | |
| 5 | 2re 12307 | . . 3 ⊢ 2 ∈ ℝ | |
| 6 | pire 26405 | . . 3 ⊢ π ∈ ℝ | |
| 7 | 4, 5, 6 | lttri 11354 | . 2 ⊢ ((0 < 2 ∧ 2 < π) → 0 < π) |
| 8 | 1, 3, 7 | mp2an 692 | 1 ⊢ 0 < π |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5117 0cc0 11122 < clt 11262 2c2 12288 4c4 12290 πcpi 16071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-inf2 9648 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-pre-sup 11200 ax-addf 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-iin 4968 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-om 7857 df-1st 7983 df-2nd 7984 df-supp 8155 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-2o 8476 df-er 8714 df-map 8837 df-pm 8838 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-fsupp 9369 df-fi 9418 df-sup 9449 df-inf 9450 df-oi 9517 df-card 9946 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-q 12958 df-rp 13002 df-xneg 13121 df-xadd 13122 df-xmul 13123 df-ioo 13358 df-ioc 13359 df-ico 13360 df-icc 13361 df-fz 13515 df-fzo 13662 df-fl 13799 df-seq 14010 df-exp 14070 df-fac 14282 df-bc 14311 df-hash 14339 df-shft 15075 df-cj 15107 df-re 15108 df-im 15109 df-sqrt 15243 df-abs 15244 df-limsup 15476 df-clim 15493 df-rlim 15494 df-sum 15692 df-ef 16072 df-sin 16074 df-cos 16075 df-pi 16077 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-starv 17273 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-unif 17281 df-hom 17282 df-cco 17283 df-rest 17423 df-topn 17424 df-0g 17442 df-gsum 17443 df-topgen 17444 df-pt 17445 df-prds 17448 df-xrs 17503 df-qtop 17508 df-imas 17509 df-xps 17511 df-mre 17585 df-mrc 17586 df-acs 17588 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18749 df-mulg 19038 df-cntz 19287 df-cmn 19750 df-psmet 21294 df-xmet 21295 df-met 21296 df-bl 21297 df-mopn 21298 df-fbas 21299 df-fg 21300 df-cnfld 21303 df-top 22819 df-topon 22836 df-topsp 22858 df-bases 22871 df-cld 22944 df-ntr 22945 df-cls 22946 df-nei 23023 df-lp 23061 df-perf 23062 df-cn 23152 df-cnp 23153 df-haus 23240 df-tx 23487 df-hmeo 23680 df-fil 23771 df-fm 23863 df-flim 23864 df-flf 23865 df-xms 24246 df-ms 24247 df-tms 24248 df-cncf 24809 df-limc 25806 df-dv 25807 |
| This theorem is referenced by: pirp 26408 sinhalfpilem 26410 sincos4thpi 26460 sincos6thpi 26463 pigt3 26465 sineq0 26471 coseq1 26472 cosq34lt1 26474 efeq1 26475 cosne0 26476 cos0pilt1 26479 recosf1o 26482 tanord1 26484 efif1olem2 26490 efif1olem4 26492 relogrn 26508 logi 26534 logneg 26535 eflogeq 26549 logneg2 26562 logf1o2 26597 root1eq1 26703 logbrec 26730 ang180lem1 26757 ang180lem2 26758 ang180lem3 26759 asin1 26842 basellem4 27032 itgexpif 34567 bj-pinftyccb 37168 bj-minftyccb 37172 bj-pinftynminfty 37174 tan2h 37565 pine0 42293 asin1half 42332 acos1half 42333 proot1ex 43152 isosctrlem1ALT 44892 sineq0ALT 44895 negpilt0 45243 coseq0 45829 sinaover2ne0 45833 itgsin0pilem1 45915 itgsinexplem1 45919 wallispilem2 46031 wallispi 46035 stirlinglem15 46053 stirlingr 46055 dirker2re 46057 dirkerdenne0 46058 dirkerval2 46059 dirkerre 46060 dirkertrigeqlem1 46063 dirkertrigeqlem2 46064 dirkertrigeqlem3 46065 dirkertrigeq 46066 dirkeritg 46067 dirkercncflem1 46068 dirkercncflem2 46069 dirkercncflem4 46071 fourierdlem16 46088 fourierdlem21 46093 fourierdlem22 46094 fourierdlem24 46096 fourierdlem62 46133 fourierdlem66 46137 fourierdlem83 46154 fourierdlem94 46165 fourierdlem95 46166 fourierdlem102 46173 fourierdlem103 46174 fourierdlem104 46175 fourierdlem111 46182 fourierdlem112 46183 fourierdlem113 46184 fourierdlem114 46185 sqwvfoura 46193 sqwvfourb 46194 fourierswlem 46195 fouriersw 46196 |
| Copyright terms: Public domain | W3C validator |