Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pipos | Structured version Visualization version GIF version |
Description: π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
Ref | Expression |
---|---|
pipos | ⊢ 0 < π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2pos 12068 | . 2 ⊢ 0 < 2 | |
2 | pigt2lt4 25603 | . . 3 ⊢ (2 < π ∧ π < 4) | |
3 | 2 | simpli 484 | . 2 ⊢ 2 < π |
4 | 0re 10970 | . . 3 ⊢ 0 ∈ ℝ | |
5 | 2re 12039 | . . 3 ⊢ 2 ∈ ℝ | |
6 | pire 25605 | . . 3 ⊢ π ∈ ℝ | |
7 | 4, 5, 6 | lttri 11093 | . 2 ⊢ ((0 < 2 ∧ 2 < π) → 0 < π) |
8 | 1, 3, 7 | mp2an 689 | 1 ⊢ 0 < π |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5079 0cc0 10864 < clt 11002 2c2 12020 4c4 12022 πcpi 15766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-inf2 9369 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 ax-pre-sup 10942 ax-addf 10943 ax-mulf 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-om 7702 df-1st 7818 df-2nd 7819 df-supp 7963 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-2o 8283 df-er 8473 df-map 8592 df-pm 8593 df-ixp 8661 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-fsupp 9099 df-fi 9140 df-sup 9171 df-inf 9172 df-oi 9239 df-card 9690 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-div 11625 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-7 12033 df-8 12034 df-9 12035 df-n0 12226 df-z 12312 df-dec 12429 df-uz 12574 df-q 12680 df-rp 12722 df-xneg 12839 df-xadd 12840 df-xmul 12841 df-ioo 13074 df-ioc 13075 df-ico 13076 df-icc 13077 df-fz 13231 df-fzo 13374 df-fl 13502 df-seq 13712 df-exp 13773 df-fac 13978 df-bc 14007 df-hash 14035 df-shft 14768 df-cj 14800 df-re 14801 df-im 14802 df-sqrt 14936 df-abs 14937 df-limsup 15170 df-clim 15187 df-rlim 15188 df-sum 15388 df-ef 15767 df-sin 15769 df-cos 15770 df-pi 15772 df-struct 16838 df-sets 16855 df-slot 16873 df-ndx 16885 df-base 16903 df-ress 16932 df-plusg 16965 df-mulr 16966 df-starv 16967 df-sca 16968 df-vsca 16969 df-ip 16970 df-tset 16971 df-ple 16972 df-ds 16974 df-unif 16975 df-hom 16976 df-cco 16977 df-rest 17123 df-topn 17124 df-0g 17142 df-gsum 17143 df-topgen 17144 df-pt 17145 df-prds 17148 df-xrs 17203 df-qtop 17208 df-imas 17209 df-xps 17211 df-mre 17285 df-mrc 17286 df-acs 17288 df-mgm 18316 df-sgrp 18365 df-mnd 18376 df-submnd 18421 df-mulg 18691 df-cntz 18913 df-cmn 19378 df-psmet 20579 df-xmet 20580 df-met 20581 df-bl 20582 df-mopn 20583 df-fbas 20584 df-fg 20585 df-cnfld 20588 df-top 22033 df-topon 22050 df-topsp 22072 df-bases 22086 df-cld 22160 df-ntr 22161 df-cls 22162 df-nei 22239 df-lp 22277 df-perf 22278 df-cn 22368 df-cnp 22369 df-haus 22456 df-tx 22703 df-hmeo 22896 df-fil 22987 df-fm 23079 df-flim 23080 df-flf 23081 df-xms 23463 df-ms 23464 df-tms 23465 df-cncf 24031 df-limc 25020 df-dv 25021 |
This theorem is referenced by: pirp 25608 sinhalfpilem 25610 sincos4thpi 25660 sincos6thpi 25662 pigt3 25664 sineq0 25670 coseq1 25671 cosq34lt1 25673 efeq1 25674 cosne0 25675 cos0pilt1 25678 recosf1o 25681 tanord1 25683 efif1olem2 25689 efif1olem4 25691 relogrn 25707 logneg 25733 eflogeq 25747 logneg2 25760 logf1o2 25795 root1eq1 25898 logbrec 25922 ang180lem1 25949 ang180lem2 25950 ang180lem3 25951 asin1 26034 basellem4 26223 itgexpif 32574 logi 33688 bj-pinftyccb 35380 bj-minftyccb 35384 bj-pinftynminfty 35386 tan2h 35757 acos1half 40159 proot1ex 41015 isosctrlem1ALT 42516 sineq0ALT 42519 negpilt0 42781 coseq0 43368 sinaover2ne0 43372 itgsin0pilem1 43454 itgsinexplem1 43458 wallispilem2 43570 wallispi 43574 stirlinglem15 43592 stirlingr 43594 dirker2re 43596 dirkerdenne0 43597 dirkerval2 43598 dirkerre 43599 dirkertrigeqlem1 43602 dirkertrigeqlem2 43603 dirkertrigeqlem3 43604 dirkertrigeq 43605 dirkeritg 43606 dirkercncflem1 43607 dirkercncflem2 43608 dirkercncflem4 43610 fourierdlem16 43627 fourierdlem21 43632 fourierdlem22 43633 fourierdlem24 43635 fourierdlem62 43672 fourierdlem66 43676 fourierdlem83 43693 fourierdlem94 43704 fourierdlem95 43705 fourierdlem102 43712 fourierdlem103 43713 fourierdlem104 43714 fourierdlem111 43721 fourierdlem112 43722 fourierdlem113 43723 fourierdlem114 43724 sqwvfoura 43732 sqwvfourb 43733 fourierswlem 43734 fouriersw 43735 |
Copyright terms: Public domain | W3C validator |