MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pipos Structured version   Visualization version   GIF version

Theorem pipos 24507
Description: π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
Assertion
Ref Expression
pipos 0 < π

Proof of Theorem pipos
StepHypRef Expression
1 2pos 11384 . 2 0 < 2
2 pigt2lt4 24503 . . 3 (2 < π ∧ π < 4)
32simpli 476 . 2 2 < π
4 0re 10297 . . 3 0 ∈ ℝ
5 2re 11348 . . 3 2 ∈ ℝ
6 pire 24505 . . 3 π ∈ ℝ
74, 5, 6lttri 10419 . 2 ((0 < 2 ∧ 2 < π) → 0 < π)
81, 3, 7mp2an 683 1 0 < π
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 4811  0cc0 10191   < clt 10330  2c2 11329  4c4 11331  πcpi 15082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269  ax-addf 10270  ax-mulf 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-om 7266  df-1st 7368  df-2nd 7369  df-supp 7500  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-er 7949  df-map 8064  df-pm 8065  df-ixp 8116  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-fsupp 8485  df-fi 8526  df-sup 8557  df-inf 8558  df-oi 8624  df-card 9018  df-cda 9245  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-4 11339  df-5 11340  df-6 11341  df-7 11342  df-8 11343  df-9 11344  df-n0 11541  df-z 11627  df-dec 11744  df-uz 11890  df-q 11993  df-rp 12032  df-xneg 12149  df-xadd 12150  df-xmul 12151  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12537  df-fzo 12677  df-fl 12804  df-seq 13012  df-exp 13071  df-fac 13268  df-bc 13297  df-hash 13325  df-shft 14095  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-limsup 14490  df-clim 14507  df-rlim 14508  df-sum 14705  df-ef 15083  df-sin 15085  df-cos 15086  df-pi 15088  df-struct 16135  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-ress 16141  df-plusg 16230  df-mulr 16231  df-starv 16232  df-sca 16233  df-vsca 16234  df-ip 16235  df-tset 16236  df-ple 16237  df-ds 16239  df-unif 16240  df-hom 16241  df-cco 16242  df-rest 16352  df-topn 16353  df-0g 16371  df-gsum 16372  df-topgen 16373  df-pt 16374  df-prds 16377  df-xrs 16431  df-qtop 16436  df-imas 16437  df-xps 16439  df-mre 16515  df-mrc 16516  df-acs 16518  df-mgm 17511  df-sgrp 17553  df-mnd 17564  df-submnd 17605  df-mulg 17811  df-cntz 18016  df-cmn 18464  df-psmet 20014  df-xmet 20015  df-met 20016  df-bl 20017  df-mopn 20018  df-fbas 20019  df-fg 20020  df-cnfld 20023  df-top 20981  df-topon 20998  df-topsp 21020  df-bases 21033  df-cld 21106  df-ntr 21107  df-cls 21108  df-nei 21185  df-lp 21223  df-perf 21224  df-cn 21314  df-cnp 21315  df-haus 21402  df-tx 21648  df-hmeo 21841  df-fil 21932  df-fm 22024  df-flim 22025  df-flf 22026  df-xms 22407  df-ms 22408  df-tms 22409  df-cncf 22963  df-limc 23924  df-dv 23925
This theorem is referenced by:  pirp  24508  sinhalfpilem  24510  sincos4thpi  24560  sincos6thpi  24562  sineq0  24568  coseq1  24569  efeq1  24570  cosne0  24571  recosf1o  24576  tanord1  24578  efif1olem2  24584  efif1olem4  24586  relogrn  24602  logneg  24628  eflogeq  24642  logneg2  24655  logf1o2  24690  root1eq1  24790  logbrec  24814  ang180lem1  24833  ang180lem2  24834  ang180lem3  24835  asin1  24915  basellem4  25104  itgexpif  31138  logi  32068  bj-pinftyccb  33545  bj-minftyccb  33549  bj-pinftynminfty  33551  tan2h  33828  pigt3  33829  proot1ex  38459  isosctrlem1ALT  39825  sineq0ALT  39828  negpilt0  40135  coseq0  40716  sinaover2ne0  40720  itgsin0pilem1  40806  itgsinexplem1  40810  wallispilem2  40923  wallispi  40927  stirlinglem15  40945  stirlingr  40947  dirker2re  40949  dirkerdenne0  40950  dirkerval2  40951  dirkerre  40952  dirkertrigeqlem1  40955  dirkertrigeqlem2  40956  dirkertrigeqlem3  40957  dirkertrigeq  40958  dirkeritg  40959  dirkercncflem1  40960  dirkercncflem2  40961  dirkercncflem4  40963  fourierdlem16  40980  fourierdlem21  40985  fourierdlem22  40986  fourierdlem24  40988  fourierdlem62  41025  fourierdlem66  41029  fourierdlem83  41046  fourierdlem94  41057  fourierdlem95  41058  fourierdlem102  41065  fourierdlem103  41066  fourierdlem104  41067  fourierdlem111  41074  fourierdlem112  41075  fourierdlem113  41076  fourierdlem114  41077  sqwvfoura  41085  sqwvfourb  41086  fourierswlem  41087  fouriersw  41088
  Copyright terms: Public domain W3C validator