![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindssnlvec | Structured version Visualization version GIF version |
Description: A singleton not containing the zero element of a vector space is always linearly independent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 28-Apr-2019.) |
Ref | Expression |
---|---|
lindssnlvec | ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → {𝑆} linIndS 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 4794 | . . . . 5 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) → 𝑠 ≠ (0g‘(Scalar‘𝑀))) | |
2 | 1 | adantl 481 | . . . 4 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → 𝑠 ≠ (0g‘(Scalar‘𝑀))) |
3 | simpl3 1192 | . . . 4 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → 𝑆 ≠ (0g‘𝑀)) | |
4 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
5 | eqid 2734 | . . . . 5 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
6 | eqid 2734 | . . . . 5 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
7 | eqid 2734 | . . . . 5 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
8 | eqid 2734 | . . . . 5 ⊢ (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀)) | |
9 | eqid 2734 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
10 | simpl1 1190 | . . . . 5 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → 𝑀 ∈ LVec) | |
11 | eldifi 4140 | . . . . . 6 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) → 𝑠 ∈ (Base‘(Scalar‘𝑀))) | |
12 | 11 | adantl 481 | . . . . 5 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → 𝑠 ∈ (Base‘(Scalar‘𝑀))) |
13 | simpl2 1191 | . . . . 5 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → 𝑆 ∈ (Base‘𝑀)) | |
14 | 4, 5, 6, 7, 8, 9, 10, 12, 13 | lvecvsn0 21128 | . . . 4 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → ((𝑠( ·𝑠 ‘𝑀)𝑆) ≠ (0g‘𝑀) ↔ (𝑠 ≠ (0g‘(Scalar‘𝑀)) ∧ 𝑆 ≠ (0g‘𝑀)))) |
15 | 2, 3, 14 | mpbir2and 713 | . . 3 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → (𝑠( ·𝑠 ‘𝑀)𝑆) ≠ (0g‘𝑀)) |
16 | 15 | ralrimiva 3143 | . 2 ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → ∀𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})(𝑠( ·𝑠 ‘𝑀)𝑆) ≠ (0g‘𝑀)) |
17 | lveclmod 21122 | . . . . 5 ⊢ (𝑀 ∈ LVec → 𝑀 ∈ LMod) | |
18 | 17 | anim1i 615 | . . . 4 ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ (Base‘𝑀))) |
19 | 18 | 3adant3 1131 | . . 3 ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ (Base‘𝑀))) |
20 | 4, 6, 7, 8, 9, 5 | snlindsntor 48316 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (Base‘𝑀)) → (∀𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})(𝑠( ·𝑠 ‘𝑀)𝑆) ≠ (0g‘𝑀) ↔ {𝑆} linIndS 𝑀)) |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → (∀𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})(𝑠( ·𝑠 ‘𝑀)𝑆) ≠ (0g‘𝑀) ↔ {𝑆} linIndS 𝑀)) |
22 | 16, 21 | mpbid 232 | 1 ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → {𝑆} linIndS 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ∖ cdif 3959 {csn 4630 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 Scalarcsca 17300 ·𝑠 cvsca 17301 0gc0g 17485 LModclmod 20874 LVecclvec 21118 linIndS clininds 48285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-tpos 8249 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-fzo 13691 df-seq 14039 df-hash 14366 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-0g 17487 df-gsum 17488 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-oppr 20350 df-dvdsr 20373 df-unit 20374 df-invr 20404 df-drng 20747 df-lmod 20876 df-lvec 21119 df-linc 48251 df-lininds 48287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |