Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submodlt Structured version   Visualization version   GIF version

Theorem submodlt 47273
Description: The difference of an element of a half-open range of nonnegative integers and the upper bound of this range modulo an integer greater than the upper bound. (Contributed by AV, 1-Sep-2025.)
Assertion
Ref Expression
submodlt ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → ((𝐴𝐵) mod 𝑁) = ((𝑁 + 𝐴) − 𝐵))

Proof of Theorem submodlt
StepHypRef Expression
1 elfzoel2 13726 . . . . . . . . 9 (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℤ)
21zcnd 12755 . . . . . . . 8 (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℂ)
3 elfzoelz 13727 . . . . . . . . 9 (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℤ)
43zcnd 12755 . . . . . . . 8 (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℂ)
52, 4jca 511 . . . . . . 7 (𝐴 ∈ (0..^𝐵) → (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ))
653ad2ant2 1134 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ))
7 negsubdi2 11600 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → -(𝐵𝐴) = (𝐴𝐵))
86, 7syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → -(𝐵𝐴) = (𝐴𝐵))
98eqcomd 2746 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝐴𝐵) = -(𝐵𝐴))
109oveq1d 7466 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → ((𝐴𝐵) mod 𝑁) = (-(𝐵𝐴) mod 𝑁))
111, 3zsubcld 12759 . . . . . 6 (𝐴 ∈ (0..^𝐵) → (𝐵𝐴) ∈ ℤ)
1211zred 12754 . . . . 5 (𝐴 ∈ (0..^𝐵) → (𝐵𝐴) ∈ ℝ)
13123ad2ant2 1134 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝐵𝐴) ∈ ℝ)
14 nnrp 13078 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
15143ad2ant1 1133 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝑁 ∈ ℝ+)
16 negmod 13984 . . . 4 (((𝐵𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-(𝐵𝐴) mod 𝑁) = ((𝑁 − (𝐵𝐴)) mod 𝑁))
1713, 15, 16syl2anc 583 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (-(𝐵𝐴) mod 𝑁) = ((𝑁 − (𝐵𝐴)) mod 𝑁))
1810, 17eqtrd 2780 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → ((𝐴𝐵) mod 𝑁) = ((𝑁 − (𝐵𝐴)) mod 𝑁))
19 nnz 12666 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
20193ad2ant1 1133 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝑁 ∈ ℤ)
21113ad2ant2 1134 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝐵𝐴) ∈ ℤ)
2220, 21zsubcld 12759 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝑁 − (𝐵𝐴)) ∈ ℤ)
2322zred 12754 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝑁 − (𝐵𝐴)) ∈ ℝ)
241zred 12754 . . . . . 6 (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℝ)
25243ad2ant2 1134 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝐵 ∈ ℝ)
26 nnre 12305 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
27263ad2ant1 1133 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝑁 ∈ ℝ)
28 elfzo0suble 13774 . . . . . 6 (𝐴 ∈ (0..^𝐵) → (𝐵𝐴) ≤ 𝐵)
29283ad2ant2 1134 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝐵𝐴) ≤ 𝐵)
30 simp3 1138 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝐵 < 𝑁)
31 leltletr 11384 . . . . . 6 (((𝐵𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐵𝐴) ≤ 𝐵𝐵 < 𝑁) → (𝐵𝐴) ≤ 𝑁))
3231imp 406 . . . . 5 ((((𝐵𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ ((𝐵𝐴) ≤ 𝐵𝐵 < 𝑁)) → (𝐵𝐴) ≤ 𝑁)
3313, 25, 27, 29, 30, 32syl32anc 1378 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝐵𝐴) ≤ 𝑁)
3427, 13subge0d 11885 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (0 ≤ (𝑁 − (𝐵𝐴)) ↔ (𝐵𝐴) ≤ 𝑁))
3533, 34mpbird 257 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 0 ≤ (𝑁 − (𝐵𝐴)))
36 elfzo0 13768 . . . . . 6 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
37 nn0re 12567 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
38 nnre 12305 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
39 posdif 11788 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
4037, 38, 39syl2an 595 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
4140biimp3a 1469 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 0 < (𝐵𝐴))
4236, 41sylbi 217 . . . . 5 (𝐴 ∈ (0..^𝐵) → 0 < (𝐵𝐴))
43423ad2ant2 1134 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 0 < (𝐵𝐴))
4413, 27ltsubposd 11881 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (0 < (𝐵𝐴) ↔ (𝑁 − (𝐵𝐴)) < 𝑁))
4543, 44mpbid 232 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝑁 − (𝐵𝐴)) < 𝑁)
46 modid 13963 . . 3 ((((𝑁 − (𝐵𝐴)) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ (𝑁 − (𝐵𝐴)) ∧ (𝑁 − (𝐵𝐴)) < 𝑁)) → ((𝑁 − (𝐵𝐴)) mod 𝑁) = (𝑁 − (𝐵𝐴)))
4723, 15, 35, 45, 46syl22anc 838 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → ((𝑁 − (𝐵𝐴)) mod 𝑁) = (𝑁 − (𝐵𝐴)))
48 nncn 12306 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
49483ad2ant1 1133 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝑁 ∈ ℂ)
5023ad2ant2 1134 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝐵 ∈ ℂ)
5143ad2ant2 1134 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝐴 ∈ ℂ)
5249, 50, 51subsub3d 11682 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝑁 − (𝐵𝐴)) = ((𝑁 + 𝐴) − 𝐵))
5318, 47, 523eqtrd 2784 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → ((𝐴𝐵) mod 𝑁) = ((𝑁 + 𝐴) − 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5167  (class class class)co 7451  cc 11185  cr 11186  0cc0 11187   + caddc 11190   < clt 11327  cle 11328  cmin 11524  -cneg 11525  cn 12298  0cn0 12558  cz 12645  +crp 13066  ..^cfzo 13722   mod cmo 13936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5318  ax-nul 5325  ax-pow 5384  ax-pr 5448  ax-un 7773  ax-cnex 11243  ax-resscn 11244  ax-1cn 11245  ax-icn 11246  ax-addcl 11247  ax-addrcl 11248  ax-mulcl 11249  ax-mulrcl 11250  ax-mulcom 11251  ax-addass 11252  ax-mulass 11253  ax-distr 11254  ax-i2m1 11255  ax-1ne0 11256  ax-1rid 11257  ax-rnegex 11258  ax-rrecex 11259  ax-cnre 11260  ax-pre-lttri 11261  ax-pre-lttrn 11262  ax-pre-ltadd 11263  ax-pre-mulgt0 11264  ax-pre-sup 11265
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4933  df-iun 5018  df-br 5168  df-opab 5230  df-mpt 5251  df-tr 5285  df-id 5594  df-eprel 5600  df-po 5608  df-so 5609  df-fr 5653  df-we 5655  df-xp 5707  df-rel 5708  df-cnv 5709  df-co 5710  df-dm 5711  df-rn 5712  df-res 5713  df-ima 5714  df-pred 6335  df-ord 6401  df-on 6402  df-lim 6403  df-suc 6404  df-iota 6528  df-fun 6578  df-fn 6579  df-f 6580  df-f1 6581  df-fo 6582  df-f1o 6583  df-fv 6584  df-riota 7407  df-ov 7454  df-oprab 7455  df-mpo 7456  df-om 7907  df-1st 8033  df-2nd 8034  df-frecs 8325  df-wrecs 8356  df-recs 8430  df-rdg 8469  df-er 8766  df-en 9007  df-dom 9008  df-sdom 9009  df-sup 9514  df-inf 9515  df-pnf 11329  df-mnf 11330  df-xr 11331  df-ltxr 11332  df-le 11333  df-sub 11526  df-neg 11527  df-div 11953  df-nn 12299  df-n0 12559  df-z 12646  df-uz 12911  df-rp 13067  df-fz 13579  df-fzo 13723  df-fl 13859  df-mod 13937
This theorem is referenced by:  gpgedgvtx1  47907
  Copyright terms: Public domain W3C validator