Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submodlt Structured version   Visualization version   GIF version

Theorem submodlt 47324
Description: The difference of an element of a half-open range of nonnegative integers and the upper bound of this range modulo an integer greater than the upper bound. (Contributed by AV, 1-Sep-2025.)
Assertion
Ref Expression
submodlt ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → ((𝐴𝐵) mod 𝑁) = ((𝑁 + 𝐴) − 𝐵))

Proof of Theorem submodlt
StepHypRef Expression
1 elfzoel2 13595 . . . . . . . . 9 (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℤ)
21zcnd 12615 . . . . . . . 8 (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℂ)
3 elfzoelz 13596 . . . . . . . . 9 (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℤ)
43zcnd 12615 . . . . . . . 8 (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℂ)
52, 4jca 511 . . . . . . 7 (𝐴 ∈ (0..^𝐵) → (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ))
653ad2ant2 1134 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ))
7 negsubdi2 11457 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → -(𝐵𝐴) = (𝐴𝐵))
86, 7syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → -(𝐵𝐴) = (𝐴𝐵))
98eqcomd 2735 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝐴𝐵) = -(𝐵𝐴))
109oveq1d 7384 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → ((𝐴𝐵) mod 𝑁) = (-(𝐵𝐴) mod 𝑁))
111, 3zsubcld 12619 . . . . . 6 (𝐴 ∈ (0..^𝐵) → (𝐵𝐴) ∈ ℤ)
1211zred 12614 . . . . 5 (𝐴 ∈ (0..^𝐵) → (𝐵𝐴) ∈ ℝ)
13123ad2ant2 1134 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝐵𝐴) ∈ ℝ)
14 nnrp 12939 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
15143ad2ant1 1133 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝑁 ∈ ℝ+)
16 negmod 13857 . . . 4 (((𝐵𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-(𝐵𝐴) mod 𝑁) = ((𝑁 − (𝐵𝐴)) mod 𝑁))
1713, 15, 16syl2anc 584 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (-(𝐵𝐴) mod 𝑁) = ((𝑁 − (𝐵𝐴)) mod 𝑁))
1810, 17eqtrd 2764 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → ((𝐴𝐵) mod 𝑁) = ((𝑁 − (𝐵𝐴)) mod 𝑁))
19 nnz 12526 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
20193ad2ant1 1133 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝑁 ∈ ℤ)
21113ad2ant2 1134 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝐵𝐴) ∈ ℤ)
2220, 21zsubcld 12619 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝑁 − (𝐵𝐴)) ∈ ℤ)
2322zred 12614 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝑁 − (𝐵𝐴)) ∈ ℝ)
241zred 12614 . . . . . 6 (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℝ)
25243ad2ant2 1134 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝐵 ∈ ℝ)
26 nnre 12169 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
27263ad2ant1 1133 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝑁 ∈ ℝ)
28 elfzo0suble 13643 . . . . . 6 (𝐴 ∈ (0..^𝐵) → (𝐵𝐴) ≤ 𝐵)
29283ad2ant2 1134 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝐵𝐴) ≤ 𝐵)
30 simp3 1138 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝐵 < 𝑁)
31 leltletr 11241 . . . . . 6 (((𝐵𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐵𝐴) ≤ 𝐵𝐵 < 𝑁) → (𝐵𝐴) ≤ 𝑁))
3231imp 406 . . . . 5 ((((𝐵𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ ((𝐵𝐴) ≤ 𝐵𝐵 < 𝑁)) → (𝐵𝐴) ≤ 𝑁)
3313, 25, 27, 29, 30, 32syl32anc 1380 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝐵𝐴) ≤ 𝑁)
3427, 13subge0d 11744 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (0 ≤ (𝑁 − (𝐵𝐴)) ↔ (𝐵𝐴) ≤ 𝑁))
3533, 34mpbird 257 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 0 ≤ (𝑁 − (𝐵𝐴)))
36 elfzo0 13637 . . . . . 6 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
37 nn0re 12427 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
38 nnre 12169 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
39 posdif 11647 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
4037, 38, 39syl2an 596 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
4140biimp3a 1471 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 0 < (𝐵𝐴))
4236, 41sylbi 217 . . . . 5 (𝐴 ∈ (0..^𝐵) → 0 < (𝐵𝐴))
43423ad2ant2 1134 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 0 < (𝐵𝐴))
4413, 27ltsubposd 11740 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (0 < (𝐵𝐴) ↔ (𝑁 − (𝐵𝐴)) < 𝑁))
4543, 44mpbid 232 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝑁 − (𝐵𝐴)) < 𝑁)
46 modid 13834 . . 3 ((((𝑁 − (𝐵𝐴)) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ (𝑁 − (𝐵𝐴)) ∧ (𝑁 − (𝐵𝐴)) < 𝑁)) → ((𝑁 − (𝐵𝐴)) mod 𝑁) = (𝑁 − (𝐵𝐴)))
4723, 15, 35, 45, 46syl22anc 838 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → ((𝑁 − (𝐵𝐴)) mod 𝑁) = (𝑁 − (𝐵𝐴)))
48 nncn 12170 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
49483ad2ant1 1133 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝑁 ∈ ℂ)
5023ad2ant2 1134 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝐵 ∈ ℂ)
5143ad2ant2 1134 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → 𝐴 ∈ ℂ)
5249, 50, 51subsub3d 11539 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → (𝑁 − (𝐵𝐴)) = ((𝑁 + 𝐴) − 𝐵))
5318, 47, 523eqtrd 2768 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → ((𝐴𝐵) mod 𝑁) = ((𝑁 + 𝐴) − 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044   + caddc 11047   < clt 11184  cle 11185  cmin 11381  -cneg 11382  cn 12162  0cn0 12418  cz 12505  +crp 12927  ..^cfzo 13591   mod cmo 13807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808
This theorem is referenced by:  gpgedgvtx1  48026
  Copyright terms: Public domain W3C validator