MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvsca Structured version   Visualization version   GIF version

Theorem psrvsca 21885
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrvsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvsca.n = ( ·𝑠𝑆)
psrvsca.k 𝐾 = (Base‘𝑅)
psrvsca.b 𝐵 = (Base‘𝑆)
psrvsca.m · = (.r𝑅)
psrvsca.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrvsca.x (𝜑𝑋𝐾)
psrvsca.y (𝜑𝐹𝐵)
Assertion
Ref Expression
psrvsca (𝜑 → (𝑋 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹))
Distinct variable group:   ,𝐼
Allowed substitution hints:   𝜑()   𝐵()   𝐷()   𝑅()   𝑆()   ()   · ()   𝐹()   𝐾()   𝑋()

Proof of Theorem psrvsca
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrvsca.x . 2 (𝜑𝑋𝐾)
2 psrvsca.y . 2 (𝜑𝐹𝐵)
3 sneq 4634 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
43xpeq2d 5702 . . . 4 (𝑥 = 𝑋 → (𝐷 × {𝑥}) = (𝐷 × {𝑋}))
54oveq1d 7429 . . 3 (𝑥 = 𝑋 → ((𝐷 × {𝑥}) ∘f · 𝑓) = ((𝐷 × {𝑋}) ∘f · 𝑓))
6 oveq2 7422 . . 3 (𝑓 = 𝐹 → ((𝐷 × {𝑋}) ∘f · 𝑓) = ((𝐷 × {𝑋}) ∘f · 𝐹))
7 psrvsca.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
8 psrvsca.n . . . 4 = ( ·𝑠𝑆)
9 psrvsca.k . . . 4 𝐾 = (Base‘𝑅)
10 psrvsca.b . . . 4 𝐵 = (Base‘𝑆)
11 psrvsca.m . . . 4 · = (.r𝑅)
12 psrvsca.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
137, 8, 9, 10, 11, 12psrvscafval 21884 . . 3 = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
14 ovex 7447 . . 3 ((𝐷 × {𝑋}) ∘f · 𝐹) ∈ V
155, 6, 13, 14ovmpo 7575 . 2 ((𝑋𝐾𝐹𝐵) → (𝑋 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹))
161, 2, 15syl2anc 583 1 (𝜑 → (𝑋 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {crab 3427  {csn 4624   × cxp 5670  ccnv 5671  cima 5675  cfv 6542  (class class class)co 7414  f cof 7677  m cmap 8838  Fincfn 8957  cn 12236  0cn0 12496  Basecbs 17173  .rcmulr 17227   ·𝑠 cvsca 17230   mPwSer cmps 21830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-struct 17109  df-slot 17144  df-ndx 17156  df-base 17174  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-tset 17245  df-psr 21835
This theorem is referenced by:  psrvscaval  21886  psrvscacl  21887  psrlmod  21896  psrass23l  21903  psrass23  21905  resspsrvsca  21913  mplvsca  21950
  Copyright terms: Public domain W3C validator