| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrvsca | Structured version Visualization version GIF version | ||
| Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrvsca.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrvsca.n | ⊢ ∙ = ( ·𝑠 ‘𝑆) |
| psrvsca.k | ⊢ 𝐾 = (Base‘𝑅) |
| psrvsca.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrvsca.m | ⊢ · = (.r‘𝑅) |
| psrvsca.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psrvsca.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| psrvsca.y | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psrvsca | ⊢ (𝜑 → (𝑋 ∙ 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrvsca.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 2 | psrvsca.y | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 3 | sneq 4581 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
| 4 | 3 | xpeq2d 5641 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐷 × {𝑥}) = (𝐷 × {𝑋})) |
| 5 | 4 | oveq1d 7356 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐷 × {𝑥}) ∘f · 𝑓) = ((𝐷 × {𝑋}) ∘f · 𝑓)) |
| 6 | oveq2 7349 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝐷 × {𝑋}) ∘f · 𝑓) = ((𝐷 × {𝑋}) ∘f · 𝐹)) | |
| 7 | psrvsca.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 8 | psrvsca.n | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑆) | |
| 9 | psrvsca.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 10 | psrvsca.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 11 | psrvsca.m | . . . 4 ⊢ · = (.r‘𝑅) | |
| 12 | psrvsca.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 13 | 7, 8, 9, 10, 11, 12 | psrvscafval 21880 | . . 3 ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) |
| 14 | ovex 7374 | . . 3 ⊢ ((𝐷 × {𝑋}) ∘f · 𝐹) ∈ V | |
| 15 | 5, 6, 13, 14 | ovmpo 7501 | . 2 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝐹 ∈ 𝐵) → (𝑋 ∙ 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹)) |
| 16 | 1, 2, 15 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑋 ∙ 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 {csn 4571 × cxp 5609 ◡ccnv 5610 “ cima 5614 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 ↑m cmap 8745 Fincfn 8864 ℕcn 12120 ℕ0cn0 12376 Basecbs 17115 .rcmulr 17157 ·𝑠 cvsca 17160 mPwSer cmps 21836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-tset 17175 df-psr 21841 |
| This theorem is referenced by: psrvscaval 21882 psrvscacl 21883 psrlmod 21892 psrass23l 21899 psrass23 21901 resspsrvsca 21909 psrascl 21911 mplvsca 21947 |
| Copyright terms: Public domain | W3C validator |