MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosf Structured version   Visualization version   GIF version

Theorem cosf 15341
Description: Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cosf cos:ℂ⟶ℂ

Proof of Theorem cosf
StepHypRef Expression
1 df-cos 15287 . 2 cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
2 ax-icn 10396 . . . . . 6 i ∈ ℂ
3 mulcl 10421 . . . . . 6 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
42, 3mpan 677 . . . . 5 (𝑥 ∈ ℂ → (i · 𝑥) ∈ ℂ)
5 efcl 15299 . . . . 5 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
64, 5syl 17 . . . 4 (𝑥 ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
7 negicn 10689 . . . . . 6 -i ∈ ℂ
8 mulcl 10421 . . . . . 6 ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
97, 8mpan 677 . . . . 5 (𝑥 ∈ ℂ → (-i · 𝑥) ∈ ℂ)
10 efcl 15299 . . . . 5 ((-i · 𝑥) ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
119, 10syl 17 . . . 4 (𝑥 ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
126, 11addcld 10461 . . 3 (𝑥 ∈ ℂ → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ)
1312halfcld 11695 . 2 (𝑥 ∈ ℂ → (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2) ∈ ℂ)
141, 13fmpti 6701 1 cos:ℂ⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2050  wf 6186  cfv 6190  (class class class)co 6978  cc 10335  ici 10339   + caddc 10340   · cmul 10342  -cneg 10673   / cdiv 11100  2c2 11498  expce 15278  cosccos 15281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-inf2 8900  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415  ax-addf 10416  ax-mulf 10417
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-er 8091  df-pm 8211  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-sup 8703  df-inf 8704  df-oi 8771  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-n0 11711  df-z 11797  df-uz 12062  df-rp 12208  df-ico 12563  df-fz 12712  df-fzo 12853  df-fl 12980  df-seq 13188  df-exp 13248  df-fac 13452  df-hash 13509  df-shft 14290  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-limsup 14692  df-clim 14709  df-rlim 14710  df-sum 14907  df-ef 15284  df-cos 15287
This theorem is referenced by:  coscl  15343  tanval  15344  recosf1o  24823  resinf1o  24824  ex-co  27998  taupilem3  34042  dvtan  34383  sinmulcos  41577  dvsinexp  41626  dvcosre  41627  dvsinax  41628  dvcosax  41642  itgsinexplem1  41670  dirkercncflem2  41821  fourierdlem56  41879  fourierdlem62  41885
  Copyright terms: Public domain W3C validator