![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cosf | Structured version Visualization version GIF version |
Description: Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
cosf | ⊢ cos:ℂ⟶ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cos 15287 | . 2 ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
2 | ax-icn 10396 | . . . . . 6 ⊢ i ∈ ℂ | |
3 | mulcl 10421 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ) | |
4 | 2, 3 | mpan 677 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (i · 𝑥) ∈ ℂ) |
5 | efcl 15299 | . . . . 5 ⊢ ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑥 ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ) |
7 | negicn 10689 | . . . . . 6 ⊢ -i ∈ ℂ | |
8 | mulcl 10421 | . . . . . 6 ⊢ ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ) | |
9 | 7, 8 | mpan 677 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (-i · 𝑥) ∈ ℂ) |
10 | efcl 15299 | . . . . 5 ⊢ ((-i · 𝑥) ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑥 ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ) |
12 | 6, 11 | addcld 10461 | . . 3 ⊢ (𝑥 ∈ ℂ → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ) |
13 | 12 | halfcld 11695 | . 2 ⊢ (𝑥 ∈ ℂ → (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2) ∈ ℂ) |
14 | 1, 13 | fmpti 6701 | 1 ⊢ cos:ℂ⟶ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2050 ⟶wf 6186 ‘cfv 6190 (class class class)co 6978 ℂcc 10335 ici 10339 + caddc 10340 · cmul 10342 -cneg 10673 / cdiv 11100 2c2 11498 expce 15278 cosccos 15281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-inf2 8900 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 ax-pre-sup 10415 ax-addf 10416 ax-mulf 10417 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-int 4751 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-se 5368 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-isom 6199 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-1st 7503 df-2nd 7504 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-1o 7907 df-oadd 7911 df-er 8091 df-pm 8211 df-en 8309 df-dom 8310 df-sdom 8311 df-fin 8312 df-sup 8703 df-inf 8704 df-oi 8771 df-card 9164 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-div 11101 df-nn 11442 df-2 11506 df-3 11507 df-n0 11711 df-z 11797 df-uz 12062 df-rp 12208 df-ico 12563 df-fz 12712 df-fzo 12853 df-fl 12980 df-seq 13188 df-exp 13248 df-fac 13452 df-hash 13509 df-shft 14290 df-cj 14322 df-re 14323 df-im 14324 df-sqrt 14458 df-abs 14459 df-limsup 14692 df-clim 14709 df-rlim 14710 df-sum 14907 df-ef 15284 df-cos 15287 |
This theorem is referenced by: coscl 15343 tanval 15344 recosf1o 24823 resinf1o 24824 ex-co 27998 taupilem3 34042 dvtan 34383 sinmulcos 41577 dvsinexp 41626 dvcosre 41627 dvsinax 41628 dvcosax 41642 itgsinexplem1 41670 dirkercncflem2 41821 fourierdlem56 41879 fourierdlem62 41885 |
Copyright terms: Public domain | W3C validator |