MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numdensq Structured version   Visualization version   GIF version

Theorem numdensq 16686
Description: Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
numdensq (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))

Proof of Theorem numdensq
StepHypRef Expression
1 qnumdencoprm 16677 . . . 4 (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1)
21oveq1d 7420 . . 3 (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (1↑2))
3 qnumcl 16672 . . . 4 (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ)
4 qdencl 16673 . . . . 5 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ)
54nnzd 12581 . . . 4 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℤ)
6 zgcdsq 16685 . . . 4 (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ) → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)))
73, 5, 6syl2anc 584 . . 3 (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)))
8 sq1 14155 . . . 4 (1↑2) = 1
98a1i 11 . . 3 (𝐴 ∈ ℚ → (1↑2) = 1)
102, 7, 93eqtr3d 2780 . 2 (𝐴 ∈ ℚ → (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1)
11 qeqnumdivden 16678 . . . 4 (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴)))
1211oveq1d 7420 . . 3 (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴) / (denom‘𝐴))↑2))
133zcnd 12663 . . . 4 (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℂ)
144nncnd 12224 . . . 4 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℂ)
154nnne0d 12258 . . . 4 (𝐴 ∈ ℚ → (denom‘𝐴) ≠ 0)
1613, 14, 15sqdivd 14120 . . 3 (𝐴 ∈ ℚ → (((numer‘𝐴) / (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2)))
1712, 16eqtrd 2772 . 2 (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2)))
18 qsqcl 14091 . . 3 (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
19 zsqcl 14090 . . . 4 ((numer‘𝐴) ∈ ℤ → ((numer‘𝐴)↑2) ∈ ℤ)
203, 19syl 17 . . 3 (𝐴 ∈ ℚ → ((numer‘𝐴)↑2) ∈ ℤ)
214nnsqcld 14203 . . 3 (𝐴 ∈ ℚ → ((denom‘𝐴)↑2) ∈ ℕ)
22 qnumdenbi 16676 . . 3 (((𝐴↑2) ∈ ℚ ∧ ((numer‘𝐴)↑2) ∈ ℤ ∧ ((denom‘𝐴)↑2) ∈ ℕ) → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))))
2318, 20, 21, 22syl3anc 1371 . 2 (𝐴 ∈ ℚ → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))))
2410, 17, 23mpbi2and 710 1 (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cfv 6540  (class class class)co 7405  1c1 11107   / cdiv 11867  cn 12208  2c2 12263  cz 12554  cq 12928  cexp 14023   gcd cgcd 16431  numercnumer 16665  denomcdenom 16666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-numer 16667  df-denom 16668
This theorem is referenced by:  numsq  16687  densq  16688
  Copyright terms: Public domain W3C validator