![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numdensq | Structured version Visualization version GIF version |
Description: Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
Ref | Expression |
---|---|
numdensq | ⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qnumdencoprm 16690 | . . . 4 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | |
2 | 1 | oveq1d 7420 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (1↑2)) |
3 | qnumcl 16685 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
4 | qdencl 16686 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
5 | 4 | nnzd 12589 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℤ) |
6 | zgcdsq 16698 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ) → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2))) | |
7 | 3, 5, 6 | syl2anc 583 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2))) |
8 | sq1 14164 | . . . 4 ⊢ (1↑2) = 1 | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℚ → (1↑2) = 1) |
10 | 2, 7, 9 | 3eqtr3d 2774 | . 2 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1) |
11 | qeqnumdivden 16691 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
12 | 11 | oveq1d 7420 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴) / (denom‘𝐴))↑2)) |
13 | 3 | zcnd 12671 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℂ) |
14 | 4 | nncnd 12232 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℂ) |
15 | 4 | nnne0d 12266 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ≠ 0) |
16 | 13, 14, 15 | sqdivd 14129 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) / (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) |
17 | 12, 16 | eqtrd 2766 | . 2 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) |
18 | qsqcl 14100 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ) | |
19 | zsqcl 14099 | . . . 4 ⊢ ((numer‘𝐴) ∈ ℤ → ((numer‘𝐴)↑2) ∈ ℤ) | |
20 | 3, 19 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴)↑2) ∈ ℤ) |
21 | 4 | nnsqcld 14212 | . . 3 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴)↑2) ∈ ℕ) |
22 | qnumdenbi 16689 | . . 3 ⊢ (((𝐴↑2) ∈ ℚ ∧ ((numer‘𝐴)↑2) ∈ ℤ ∧ ((denom‘𝐴)↑2) ∈ ℕ) → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))) | |
23 | 18, 20, 21, 22 | syl3anc 1368 | . 2 ⊢ (𝐴 ∈ ℚ → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))) |
24 | 10, 17, 23 | mpbi2and 709 | 1 ⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6537 (class class class)co 7405 1c1 11113 / cdiv 11875 ℕcn 12216 2c2 12271 ℤcz 12562 ℚcq 12936 ↑cexp 14032 gcd cgcd 16442 numercnumer 16678 denomcdenom 16679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-rp 12981 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-dvds 16205 df-gcd 16443 df-numer 16680 df-denom 16681 |
This theorem is referenced by: numsq 16700 densq 16701 |
Copyright terms: Public domain | W3C validator |