![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numdensq | Structured version Visualization version GIF version |
Description: Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
Ref | Expression |
---|---|
numdensq | ⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qnumdencoprm 15868 | . . . 4 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | |
2 | 1 | oveq1d 6939 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (1↑2)) |
3 | qnumcl 15863 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
4 | qdencl 15864 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
5 | 4 | nnzd 11838 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℤ) |
6 | zgcdsq 15876 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ) → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2))) | |
7 | 3, 5, 6 | syl2anc 579 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2))) |
8 | sq1 13282 | . . . 4 ⊢ (1↑2) = 1 | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℚ → (1↑2) = 1) |
10 | 2, 7, 9 | 3eqtr3d 2822 | . 2 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1) |
11 | qeqnumdivden 15869 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
12 | 11 | oveq1d 6939 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴) / (denom‘𝐴))↑2)) |
13 | 3 | zcnd 11840 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℂ) |
14 | 4 | nncnd 11397 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℂ) |
15 | 4 | nnne0d 11430 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ≠ 0) |
16 | 13, 14, 15 | sqdivd 13345 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) / (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) |
17 | 12, 16 | eqtrd 2814 | . 2 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) |
18 | qsqcl 13259 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ) | |
19 | zsqcl 13258 | . . . 4 ⊢ ((numer‘𝐴) ∈ ℤ → ((numer‘𝐴)↑2) ∈ ℤ) | |
20 | 3, 19 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴)↑2) ∈ ℤ) |
21 | 4 | nnsqcld 13356 | . . 3 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴)↑2) ∈ ℕ) |
22 | qnumdenbi 15867 | . . 3 ⊢ (((𝐴↑2) ∈ ℚ ∧ ((numer‘𝐴)↑2) ∈ ℤ ∧ ((denom‘𝐴)↑2) ∈ ℕ) → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))) | |
23 | 18, 20, 21, 22 | syl3anc 1439 | . 2 ⊢ (𝐴 ∈ ℚ → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))) |
24 | 10, 17, 23 | mpbi2and 702 | 1 ⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ‘cfv 6137 (class class class)co 6924 1c1 10275 / cdiv 11035 ℕcn 11379 2c2 11435 ℤcz 11733 ℚcq 12100 ↑cexp 13183 gcd cgcd 15632 numercnumer 15856 denomcdenom 15857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-n0 11648 df-z 11734 df-uz 11998 df-q 12101 df-rp 12143 df-fl 12917 df-mod 12993 df-seq 13125 df-exp 13184 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-dvds 15397 df-gcd 15633 df-numer 15858 df-denom 15859 |
This theorem is referenced by: numsq 15878 densq 15879 |
Copyright terms: Public domain | W3C validator |