Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numdensq | Structured version Visualization version GIF version |
Description: Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
Ref | Expression |
---|---|
numdensq | ⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qnumdencoprm 16449 | . . . 4 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | |
2 | 1 | oveq1d 7290 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (1↑2)) |
3 | qnumcl 16444 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
4 | qdencl 16445 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
5 | 4 | nnzd 12425 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℤ) |
6 | zgcdsq 16457 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ) → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2))) | |
7 | 3, 5, 6 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2))) |
8 | sq1 13912 | . . . 4 ⊢ (1↑2) = 1 | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℚ → (1↑2) = 1) |
10 | 2, 7, 9 | 3eqtr3d 2786 | . 2 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1) |
11 | qeqnumdivden 16450 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
12 | 11 | oveq1d 7290 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴) / (denom‘𝐴))↑2)) |
13 | 3 | zcnd 12427 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℂ) |
14 | 4 | nncnd 11989 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℂ) |
15 | 4 | nnne0d 12023 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ≠ 0) |
16 | 13, 14, 15 | sqdivd 13877 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) / (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) |
17 | 12, 16 | eqtrd 2778 | . 2 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) |
18 | qsqcl 13849 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ) | |
19 | zsqcl 13848 | . . . 4 ⊢ ((numer‘𝐴) ∈ ℤ → ((numer‘𝐴)↑2) ∈ ℤ) | |
20 | 3, 19 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴)↑2) ∈ ℤ) |
21 | 4 | nnsqcld 13959 | . . 3 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴)↑2) ∈ ℕ) |
22 | qnumdenbi 16448 | . . 3 ⊢ (((𝐴↑2) ∈ ℚ ∧ ((numer‘𝐴)↑2) ∈ ℤ ∧ ((denom‘𝐴)↑2) ∈ ℕ) → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))) | |
23 | 18, 20, 21, 22 | syl3anc 1370 | . 2 ⊢ (𝐴 ∈ ℚ → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))) |
24 | 10, 17, 23 | mpbi2and 709 | 1 ⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 1c1 10872 / cdiv 11632 ℕcn 11973 2c2 12028 ℤcz 12319 ℚcq 12688 ↑cexp 13782 gcd cgcd 16201 numercnumer 16437 denomcdenom 16438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-numer 16439 df-denom 16440 |
This theorem is referenced by: numsq 16459 densq 16460 |
Copyright terms: Public domain | W3C validator |