MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numdensq Structured version   Visualization version   GIF version

Theorem numdensq 16458
Description: Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
numdensq (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))

Proof of Theorem numdensq
StepHypRef Expression
1 qnumdencoprm 16449 . . . 4 (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1)
21oveq1d 7290 . . 3 (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (1↑2))
3 qnumcl 16444 . . . 4 (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ)
4 qdencl 16445 . . . . 5 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ)
54nnzd 12425 . . . 4 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℤ)
6 zgcdsq 16457 . . . 4 (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ) → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)))
73, 5, 6syl2anc 584 . . 3 (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)))
8 sq1 13912 . . . 4 (1↑2) = 1
98a1i 11 . . 3 (𝐴 ∈ ℚ → (1↑2) = 1)
102, 7, 93eqtr3d 2786 . 2 (𝐴 ∈ ℚ → (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1)
11 qeqnumdivden 16450 . . . 4 (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴)))
1211oveq1d 7290 . . 3 (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴) / (denom‘𝐴))↑2))
133zcnd 12427 . . . 4 (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℂ)
144nncnd 11989 . . . 4 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℂ)
154nnne0d 12023 . . . 4 (𝐴 ∈ ℚ → (denom‘𝐴) ≠ 0)
1613, 14, 15sqdivd 13877 . . 3 (𝐴 ∈ ℚ → (((numer‘𝐴) / (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2)))
1712, 16eqtrd 2778 . 2 (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2)))
18 qsqcl 13849 . . 3 (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
19 zsqcl 13848 . . . 4 ((numer‘𝐴) ∈ ℤ → ((numer‘𝐴)↑2) ∈ ℤ)
203, 19syl 17 . . 3 (𝐴 ∈ ℚ → ((numer‘𝐴)↑2) ∈ ℤ)
214nnsqcld 13959 . . 3 (𝐴 ∈ ℚ → ((denom‘𝐴)↑2) ∈ ℕ)
22 qnumdenbi 16448 . . 3 (((𝐴↑2) ∈ ℚ ∧ ((numer‘𝐴)↑2) ∈ ℤ ∧ ((denom‘𝐴)↑2) ∈ ℕ) → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))))
2318, 20, 21, 22syl3anc 1370 . 2 (𝐴 ∈ ℚ → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))))
2410, 17, 23mpbi2and 709 1 (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  1c1 10872   / cdiv 11632  cn 11973  2c2 12028  cz 12319  cq 12688  cexp 13782   gcd cgcd 16201  numercnumer 16437  denomcdenom 16438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-numer 16439  df-denom 16440
This theorem is referenced by:  numsq  16459  densq  16460
  Copyright terms: Public domain W3C validator