![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numdensq | Structured version Visualization version GIF version |
Description: Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
Ref | Expression |
---|---|
numdensq | ⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qnumdencoprm 16663 | . . . 4 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | |
2 | 1 | oveq1d 7408 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (1↑2)) |
3 | qnumcl 16658 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
4 | qdencl 16659 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
5 | 4 | nnzd 12567 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℤ) |
6 | zgcdsq 16671 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ) → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2))) | |
7 | 3, 5, 6 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2))) |
8 | sq1 14141 | . . . 4 ⊢ (1↑2) = 1 | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℚ → (1↑2) = 1) |
10 | 2, 7, 9 | 3eqtr3d 2779 | . 2 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1) |
11 | qeqnumdivden 16664 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
12 | 11 | oveq1d 7408 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴) / (denom‘𝐴))↑2)) |
13 | 3 | zcnd 12649 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℂ) |
14 | 4 | nncnd 12210 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℂ) |
15 | 4 | nnne0d 12244 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ≠ 0) |
16 | 13, 14, 15 | sqdivd 14106 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) / (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) |
17 | 12, 16 | eqtrd 2771 | . 2 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) |
18 | qsqcl 14077 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ) | |
19 | zsqcl 14076 | . . . 4 ⊢ ((numer‘𝐴) ∈ ℤ → ((numer‘𝐴)↑2) ∈ ℤ) | |
20 | 3, 19 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴)↑2) ∈ ℤ) |
21 | 4 | nnsqcld 14189 | . . 3 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴)↑2) ∈ ℕ) |
22 | qnumdenbi 16662 | . . 3 ⊢ (((𝐴↑2) ∈ ℚ ∧ ((numer‘𝐴)↑2) ∈ ℤ ∧ ((denom‘𝐴)↑2) ∈ ℕ) → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))) | |
23 | 18, 20, 21, 22 | syl3anc 1371 | . 2 ⊢ (𝐴 ∈ ℚ → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))) |
24 | 10, 17, 23 | mpbi2and 710 | 1 ⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ‘cfv 6532 (class class class)co 7393 1c1 11093 / cdiv 11853 ℕcn 12194 2c2 12249 ℤcz 12540 ℚcq 12914 ↑cexp 14009 gcd cgcd 16417 numercnumer 16651 denomcdenom 16652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-pre-sup 11170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9419 df-inf 9420 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-nn 12195 df-2 12257 df-3 12258 df-n0 12455 df-z 12541 df-uz 12805 df-q 12915 df-rp 12957 df-fl 13739 df-mod 13817 df-seq 13949 df-exp 14010 df-cj 15028 df-re 15029 df-im 15030 df-sqrt 15164 df-abs 15165 df-dvds 16180 df-gcd 16418 df-numer 16653 df-denom 16654 |
This theorem is referenced by: numsq 16673 densq 16674 |
Copyright terms: Public domain | W3C validator |