| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsqcld | Structured version Visualization version GIF version | ||
| Description: The naturals are closed under squaring. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| nnexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnsqcld | ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnsqcl 14072 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℕ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7370 ℕcn 12165 2c2 12220 ↑cexp 14005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-er 8649 df-en 8897 df-dom 8898 df-sdom 8899 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-n0 12422 df-z 12509 df-uz 12773 df-seq 13946 df-exp 14006 |
| This theorem is referenced by: sqrt2irrlem 16194 sqgcd 16510 numdensq 16702 pythagtriplem4 16768 pythagtriplem19 16782 prmreclem1 16865 prmreclem3 16867 prmreclem6 16870 mul4sqlem 16902 4sqlem12 16905 4sqlem16 16909 lgamgulmlem3 26976 lgamgulmlem4 26977 lgamgulmlem6 26979 basellem8 27033 chpub 27166 2sqlem3 27366 2sqlem8 27372 2sqcoprm 27381 2sqmod 27382 dchrisum0fno1 27457 fltabcoprm 42625 flt4lem3 42631 flt4lem5 42633 flt4lem5elem 42634 flt4lem5a 42635 flt4lem5b 42636 flt4lem5c 42637 flt4lem5d 42638 flt4lem5e 42639 flt4lem6 42641 flt4lem7 42642 nna4b4nsq 42643 pellexlem2 42813 rmspecsqrtnq 42889 jm2.27a 42989 jm2.27c 42991 fmtnorec3 47544 |
| Copyright terms: Public domain | W3C validator |