Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odmulg2 | Structured version Visualization version GIF version |
Description: The order of a multiple divides the order of the base point. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
odmulgid.1 | ⊢ 𝑋 = (Base‘𝐺) |
odmulgid.2 | ⊢ 𝑂 = (od‘𝐺) |
odmulgid.3 | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
odmulg2 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∥ (𝑂‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odmulgid.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
2 | odmulgid.2 | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
3 | 1, 2 | odcl 19217 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
4 | 3 | nn0zd 12503 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℤ) |
5 | 4 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑂‘𝐴) ∈ ℤ) |
6 | simp3 1137 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
7 | dvdsmul1 16063 | . . 3 ⊢ (((𝑂‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑂‘𝐴) ∥ ((𝑂‘𝐴) · 𝑁)) | |
8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑂‘𝐴) ∥ ((𝑂‘𝐴) · 𝑁)) |
9 | odmulgid.3 | . . . 4 ⊢ · = (.g‘𝐺) | |
10 | 1, 2, 9 | odmulgid 19234 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ (𝑂‘𝐴) ↔ (𝑂‘𝐴) ∥ ((𝑂‘𝐴) · 𝑁))) |
11 | 5, 10 | mpdan 684 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ (𝑂‘𝐴) ↔ (𝑂‘𝐴) ∥ ((𝑂‘𝐴) · 𝑁))) |
12 | 8, 11 | mpbird 256 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∥ (𝑂‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5086 ‘cfv 6465 (class class class)co 7316 · cmul 10955 ℤcz 12398 ∥ cdvds 16039 Basecbs 16986 Grpcgrp 18650 .gcmg 18773 odcod 19205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-sup 9277 df-inf 9278 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-n0 12313 df-z 12399 df-uz 12662 df-rp 12810 df-fz 13319 df-fl 13591 df-mod 13669 df-seq 13801 df-exp 13862 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 df-dvds 16040 df-0g 17226 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-grp 18653 df-minusg 18654 df-sbg 18655 df-mulg 18774 df-od 19209 |
This theorem is referenced by: odmulgeq 19237 |
Copyright terms: Public domain | W3C validator |