|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sqsqrtd | Structured version Visualization version GIF version | ||
| Description: Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 29-May-2016.) | 
| Ref | Expression | 
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| Ref | Expression | 
|---|---|
| sqsqrtd | ⊢ (𝜑 → ((√‘𝐴)↑2) = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | sqrtth 15404 | . 2 ⊢ (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((√‘𝐴)↑2) = 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 2c2 12322 ↑cexp 14103 √csqrt 15273 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 | 
| This theorem is referenced by: msqsqrtd 15480 sqr00d 15481 sqrt2irrlem 16285 zsqrtelqelz 16796 nonsq 16797 prmreclem3 16957 nmsq 25229 cphipipcj 25235 ipcau2 25269 tcphcphlem1 25270 tcphcph 25272 minveclem3b 25463 efif1olem3 26587 efif1olem4 26588 cxpsqrt 26746 loglesqrt 26805 quad 26884 cubic 26893 quartlem4 26904 quart 26905 asinlem 26912 asinlem2 26913 efiatan2 26961 cosatan 26965 cosatanne0 26966 atans2 26975 chpub 27265 addsqnreup 27488 chtppilim 27520 rplogsumlem1 27529 dchrisum0flblem1 27553 dchrisum0flblem2 27554 dchrisum0fno1 27556 sin2h 37618 cos2h 37619 areacirclem1 37716 areacirclem5 37720 pell1234qrne0 42869 pell1234qrreccl 42870 pell1234qrmulcl 42871 pell14qrgt0 42875 pell14qrdich 42885 pell1qrgaplem 42889 pell14qrgapw 42892 pellqrex 42895 rmxyneg 42937 jm2.22 43012 sqrtcval 43659 et-sqrtnegnre 46893 | 
| Copyright terms: Public domain | W3C validator |