| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqsqrtd | Structured version Visualization version GIF version | ||
| Description: Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| sqsqrtd | ⊢ (𝜑 → ((√‘𝐴)↑2) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | sqrtth 15388 | . 2 ⊢ (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((√‘𝐴)↑2) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 2c2 12300 ↑cexp 14084 √csqrt 15257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 |
| This theorem is referenced by: msqsqrtd 15464 sqr00d 15465 sqrt2irrlem 16271 zsqrtelqelz 16782 nonsq 16783 prmreclem3 16943 nmsq 25151 cphipipcj 25157 ipcau2 25191 tcphcphlem1 25192 tcphcph 25194 minveclem3b 25385 efif1olem3 26510 efif1olem4 26511 cxpsqrt 26669 loglesqrt 26728 quad 26807 cubic 26816 quartlem4 26827 quart 26828 asinlem 26835 asinlem2 26836 efiatan2 26884 cosatan 26888 cosatanne0 26889 atans2 26898 chpub 27188 addsqnreup 27411 chtppilim 27443 rplogsumlem1 27452 dchrisum0flblem1 27476 dchrisum0flblem2 27477 dchrisum0fno1 27479 iconstr 33805 constrresqrtcl 33816 sin2h 37639 cos2h 37640 areacirclem1 37737 areacirclem5 37741 pell1234qrne0 42843 pell1234qrreccl 42844 pell1234qrmulcl 42845 pell14qrgt0 42849 pell14qrdich 42859 pell1qrgaplem 42863 pell14qrgapw 42866 pellqrex 42869 rmxyneg 42911 jm2.22 42986 sqrtcval 43632 et-sqrtnegnre 46869 |
| Copyright terms: Public domain | W3C validator |