| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqrtcld | Structured version Visualization version GIF version | ||
| Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| sqrtcld | ⊢ (𝜑 → (√‘𝐴) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | sqrtcl 15335 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (√‘𝐴) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6514 ℂcc 11073 √csqrt 15206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
| This theorem is referenced by: msqsqrtd 15416 pythagtriplem12 16804 pythagtriplem14 16806 pythagtriplem16 16808 tcphcphlem1 25142 tcphcph 25144 efif1olem3 26460 efif1olem4 26461 dvcnsqrt 26660 loglesqrt 26678 quad 26757 dcubic 26763 cubic 26766 quartlem2 26775 quartlem3 26776 quartlem4 26777 quart 26778 asinlem 26785 asinlem2 26786 asinlem3a 26787 asinlem3 26788 asinf 26789 asinneg 26803 efiasin 26805 sinasin 26806 asinbnd 26816 cosasin 26821 efiatan2 26834 cosatan 26838 cosatanne0 26839 atans2 26848 addsqnreup 27361 quad3d 32680 constrsqrtcl 33776 sqsscirc1 33905 divsqrtid 34592 logdivsqrle 34648 dvasin 37705 dvacos 37706 areacirclem1 37709 areacirclem4 37712 areacirc 37714 tan3rdpi 42347 pell1234qrne0 42848 pell1234qrreccl 42849 pell1234qrmulcl 42850 pell14qrgt0 42854 pell1234qrdich 42856 pell14qrdich 42864 pell1qr1 42866 rmspecsqrtnq 42901 rmxyneg 42916 rmxyadd 42917 rmxy1 42918 rmxy0 42919 jm2.22 42991 stirlinglem3 46081 stirlinglem4 46082 stirlinglem13 46091 stirlinglem14 46092 stirlinglem15 46093 qndenserrnbllem 46299 sqrtnegnre 47312 quad1 47625 requad01 47626 requad1 47627 requad2 47628 itsclc0yqsol 48757 itscnhlc0xyqsol 48758 itschlc0xyqsol1 48759 itschlc0xyqsol 48760 itsclc0xyqsolr 48762 inlinecirc02plem 48779 |
| Copyright terms: Public domain | W3C validator |