MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtcld Structured version   Visualization version   GIF version

Theorem sqrtcld 14789
Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
abscld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
sqrtcld (𝜑 → (√‘𝐴) ∈ ℂ)

Proof of Theorem sqrtcld
StepHypRef Expression
1 abscld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 sqrtcl 14713 . 2 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
31, 2syl 17 1 (𝜑 → (√‘𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cfv 6324  cc 10524  csqrt 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  msqsqrtd  14792  pythagtriplem12  16153  pythagtriplem14  16155  pythagtriplem16  16157  tcphcphlem1  23839  tcphcph  23841  efif1olem3  25136  efif1olem4  25137  dvcnsqrt  25333  loglesqrt  25347  quad  25426  dcubic  25432  cubic  25435  quartlem2  25444  quartlem3  25445  quartlem4  25446  quart  25447  asinlem  25454  asinlem2  25455  asinlem3a  25456  asinlem3  25457  asinf  25458  asinneg  25472  efiasin  25474  sinasin  25475  asinbnd  25485  cosasin  25490  efiatan2  25503  cosatan  25507  cosatanne0  25508  atans2  25517  addsqnreup  26027  sqsscirc1  31261  divsqrtid  31975  logdivsqrle  32031  dvasin  35141  dvacos  35142  areacirclem1  35145  areacirclem4  35148  areacirc  35150  pell1234qrne0  39794  pell1234qrreccl  39795  pell1234qrmulcl  39796  pell14qrgt0  39800  pell1234qrdich  39802  pell14qrdich  39810  pell1qr1  39812  rmspecsqrtnq  39847  rmxyneg  39861  rmxyadd  39862  rmxy1  39863  rmxy0  39864  jm2.22  39936  stirlinglem3  42718  stirlinglem4  42719  stirlinglem13  42728  stirlinglem14  42729  stirlinglem15  42730  qndenserrnbllem  42936  sqrtnegnre  43864  quad1  44138  requad01  44139  requad1  44140  requad2  44141  itsclc0yqsol  45178  itscnhlc0xyqsol  45179  itschlc0xyqsol1  45180  itschlc0xyqsol  45181  itsclc0xyqsolr  45183  inlinecirc02plem  45200
  Copyright terms: Public domain W3C validator