| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqrtcld | Structured version Visualization version GIF version | ||
| Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| sqrtcld | ⊢ (𝜑 → (√‘𝐴) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | sqrtcl 15264 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (√‘𝐴) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6476 ℂcc 10999 √csqrt 15135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 |
| This theorem is referenced by: msqsqrtd 15345 pythagtriplem12 16733 pythagtriplem14 16735 pythagtriplem16 16737 tcphcphlem1 25157 tcphcph 25159 efif1olem3 26475 efif1olem4 26476 dvcnsqrt 26675 loglesqrt 26693 quad 26772 dcubic 26778 cubic 26781 quartlem2 26790 quartlem3 26791 quartlem4 26792 quart 26793 asinlem 26800 asinlem2 26801 asinlem3a 26802 asinlem3 26803 asinf 26804 asinneg 26818 efiasin 26820 sinasin 26821 asinbnd 26831 cosasin 26836 efiatan2 26849 cosatan 26853 cosatanne0 26854 atans2 26863 addsqnreup 27376 quad3d 32725 constrsqrtcl 33784 sqsscirc1 33913 divsqrtid 34599 logdivsqrle 34655 dvasin 37744 dvacos 37745 areacirclem1 37748 areacirclem4 37751 areacirc 37753 tan3rdpi 42385 pell1234qrne0 42886 pell1234qrreccl 42887 pell1234qrmulcl 42888 pell14qrgt0 42892 pell1234qrdich 42894 pell14qrdich 42902 pell1qr1 42904 rmspecsqrtnq 42939 rmxyneg 42953 rmxyadd 42954 rmxy1 42955 rmxy0 42956 jm2.22 43028 stirlinglem3 46114 stirlinglem4 46115 stirlinglem13 46124 stirlinglem14 46125 stirlinglem15 46126 qndenserrnbllem 46332 sqrtnegnre 47338 quad1 47651 requad01 47652 requad1 47653 requad2 47654 itsclc0yqsol 48796 itscnhlc0xyqsol 48797 itschlc0xyqsol1 48798 itschlc0xyqsol 48799 itsclc0xyqsolr 48801 inlinecirc02plem 48818 |
| Copyright terms: Public domain | W3C validator |