| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqrtcld | Structured version Visualization version GIF version | ||
| Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| sqrtcld | ⊢ (𝜑 → (√‘𝐴) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | sqrtcl 15287 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (√‘𝐴) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6486 ℂcc 11026 √csqrt 15158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 |
| This theorem is referenced by: msqsqrtd 15368 pythagtriplem12 16756 pythagtriplem14 16758 pythagtriplem16 16760 tcphcphlem1 25151 tcphcph 25153 efif1olem3 26469 efif1olem4 26470 dvcnsqrt 26669 loglesqrt 26687 quad 26766 dcubic 26772 cubic 26775 quartlem2 26784 quartlem3 26785 quartlem4 26786 quart 26787 asinlem 26794 asinlem2 26795 asinlem3a 26796 asinlem3 26797 asinf 26798 asinneg 26812 efiasin 26814 sinasin 26815 asinbnd 26825 cosasin 26830 efiatan2 26843 cosatan 26847 cosatanne0 26848 atans2 26857 addsqnreup 27370 quad3d 32706 constrsqrtcl 33748 sqsscirc1 33877 divsqrtid 34564 logdivsqrle 34620 dvasin 37686 dvacos 37687 areacirclem1 37690 areacirclem4 37693 areacirc 37695 tan3rdpi 42328 pell1234qrne0 42829 pell1234qrreccl 42830 pell1234qrmulcl 42831 pell14qrgt0 42835 pell1234qrdich 42837 pell14qrdich 42845 pell1qr1 42847 rmspecsqrtnq 42882 rmxyneg 42896 rmxyadd 42897 rmxy1 42898 rmxy0 42899 jm2.22 42971 stirlinglem3 46061 stirlinglem4 46062 stirlinglem13 46071 stirlinglem14 46072 stirlinglem15 46073 qndenserrnbllem 46279 sqrtnegnre 47295 quad1 47608 requad01 47609 requad1 47610 requad2 47611 itsclc0yqsol 48753 itscnhlc0xyqsol 48754 itschlc0xyqsol1 48755 itschlc0xyqsol 48756 itsclc0xyqsolr 48758 inlinecirc02plem 48775 |
| Copyright terms: Public domain | W3C validator |