MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtcld Structured version   Visualization version   GIF version

Theorem sqrtcld 15077
Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
abscld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
sqrtcld (𝜑 → (√‘𝐴) ∈ ℂ)

Proof of Theorem sqrtcld
StepHypRef Expression
1 abscld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 sqrtcl 15001 . 2 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
31, 2syl 17 1 (𝜑 → (√‘𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6418  cc 10800  csqrt 14872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  msqsqrtd  15080  pythagtriplem12  16455  pythagtriplem14  16457  pythagtriplem16  16459  tcphcphlem1  24304  tcphcph  24306  efif1olem3  25605  efif1olem4  25606  dvcnsqrt  25802  loglesqrt  25816  quad  25895  dcubic  25901  cubic  25904  quartlem2  25913  quartlem3  25914  quartlem4  25915  quart  25916  asinlem  25923  asinlem2  25924  asinlem3a  25925  asinlem3  25926  asinf  25927  asinneg  25941  efiasin  25943  sinasin  25944  asinbnd  25954  cosasin  25959  efiatan2  25972  cosatan  25976  cosatanne0  25977  atans2  25986  addsqnreup  26496  sqsscirc1  31760  divsqrtid  32474  logdivsqrle  32530  dvasin  35788  dvacos  35789  areacirclem1  35792  areacirclem4  35795  areacirc  35797  pell1234qrne0  40591  pell1234qrreccl  40592  pell1234qrmulcl  40593  pell14qrgt0  40597  pell1234qrdich  40599  pell14qrdich  40607  pell1qr1  40609  rmspecsqrtnq  40644  rmxyneg  40658  rmxyadd  40659  rmxy1  40660  rmxy0  40661  jm2.22  40733  stirlinglem3  43507  stirlinglem4  43508  stirlinglem13  43517  stirlinglem14  43518  stirlinglem15  43519  qndenserrnbllem  43725  sqrtnegnre  44687  quad1  44960  requad01  44961  requad1  44962  requad2  44963  itsclc0yqsol  45998  itscnhlc0xyqsol  45999  itschlc0xyqsol1  46000  itschlc0xyqsol  46001  itsclc0xyqsolr  46003  inlinecirc02plem  46020
  Copyright terms: Public domain W3C validator