| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqrtcld | Structured version Visualization version GIF version | ||
| Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| sqrtcld | ⊢ (𝜑 → (√‘𝐴) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | sqrtcl 15276 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (√‘𝐴) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ‘cfv 6489 ℂcc 11015 √csqrt 15147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 |
| This theorem is referenced by: msqsqrtd 15357 pythagtriplem12 16745 pythagtriplem14 16747 pythagtriplem16 16749 tcphcphlem1 25182 tcphcph 25184 efif1olem3 26500 efif1olem4 26501 dvcnsqrt 26700 loglesqrt 26718 quad 26797 dcubic 26803 cubic 26806 quartlem2 26815 quartlem3 26816 quartlem4 26817 quart 26818 asinlem 26825 asinlem2 26826 asinlem3a 26827 asinlem3 26828 asinf 26829 asinneg 26843 efiasin 26845 sinasin 26846 asinbnd 26856 cosasin 26861 efiatan2 26874 cosatan 26878 cosatanne0 26879 atans2 26888 addsqnreup 27401 quad3d 32757 constrsqrtcl 33864 sqsscirc1 33993 divsqrtid 34679 logdivsqrle 34735 dvasin 37817 dvacos 37818 areacirclem1 37821 areacirclem4 37824 areacirc 37826 tan3rdpi 42522 pell1234qrne0 43010 pell1234qrreccl 43011 pell1234qrmulcl 43012 pell14qrgt0 43016 pell1234qrdich 43018 pell14qrdich 43026 pell1qr1 43028 rmspecsqrtnq 43063 rmxyneg 43077 rmxyadd 43078 rmxy1 43079 rmxy0 43080 jm2.22 43152 stirlinglem3 46236 stirlinglem4 46237 stirlinglem13 46246 stirlinglem14 46247 stirlinglem15 46248 qndenserrnbllem 46454 sqrtnegnre 47469 quad1 47782 requad01 47783 requad1 47784 requad2 47785 itsclc0yqsol 48926 itscnhlc0xyqsol 48927 itschlc0xyqsol1 48928 itschlc0xyqsol 48929 itsclc0xyqsolr 48931 inlinecirc02plem 48948 |
| Copyright terms: Public domain | W3C validator |