![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrtcld | Structured version Visualization version GIF version |
Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
sqrtcld | ⊢ (𝜑 → (√‘𝐴) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | sqrtcl 14439 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (√‘𝐴) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ‘cfv 6100 ℂcc 10221 √csqrt 14311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 ax-pre-sup 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-2nd 7401 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-er 7981 df-en 8195 df-dom 8196 df-sdom 8197 df-sup 8589 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-div 10976 df-nn 11312 df-2 11373 df-3 11374 df-n0 11578 df-z 11664 df-uz 11928 df-rp 12072 df-seq 13053 df-exp 13112 df-cj 14177 df-re 14178 df-im 14179 df-sqrt 14313 df-abs 14314 |
This theorem is referenced by: msqsqrtd 14517 pythagtriplem12 15861 pythagtriplem14 15863 pythagtriplem16 15865 tcphcphlem1 23358 tcphcph 23360 efif1olem3 24629 efif1olem4 24630 dvcnsqrt 24826 loglesqrt 24840 quad 24916 dcubic 24922 cubic 24925 quartlem2 24934 quartlem3 24935 quartlem4 24936 quart 24937 asinlem 24944 asinlem2 24945 asinlem3a 24946 asinlem3 24947 asinf 24948 asinneg 24962 efiasin 24964 sinasin 24965 asinbnd 24975 cosasin 24980 efiatan2 24993 cosatan 24997 cosatanne0 24998 atans2 25007 sqsscirc1 30463 divsqrtid 31185 logdivsqrle 31241 dvasin 33977 dvacos 33978 areacirclem1 33981 areacirclem4 33984 areacirc 33986 pell1234qrne0 38192 pell1234qrreccl 38193 pell1234qrmulcl 38194 pell14qrgt0 38198 pell1234qrdich 38200 pell14qrdich 38208 pell1qr1 38210 rmspecsqrtnq 38245 rmxyneg 38259 rmxyadd 38260 rmxy1 38261 rmxy0 38262 jm2.22 38336 stirlinglem3 41025 stirlinglem4 41026 stirlinglem13 41035 stirlinglem14 41036 stirlinglem15 41037 qndenserrnbllem 41246 |
Copyright terms: Public domain | W3C validator |