![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressply1add | Structured version Visualization version GIF version |
Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressply1.s | ⊢ 𝑆 = (Poly1‘𝑅) |
ressply1.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressply1.u | ⊢ 𝑈 = (Poly1‘𝐻) |
ressply1.b | ⊢ 𝐵 = (Base‘𝑈) |
ressply1.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressply1.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
Ref | Expression |
---|---|
ressply1add | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2779 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
2 | ressply1.h | . . 3 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
3 | eqid 2779 | . . 3 ⊢ (1o mPoly 𝐻) = (1o mPoly 𝐻) | |
4 | ressply1.u | . . . 4 ⊢ 𝑈 = (Poly1‘𝐻) | |
5 | eqid 2779 | . . . 4 ⊢ (PwSer1‘𝐻) = (PwSer1‘𝐻) | |
6 | ressply1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑈) | |
7 | 4, 5, 6 | ply1bas 20066 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝐻)) |
8 | 1on 7912 | . . . 4 ⊢ 1o ∈ On | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → 1o ∈ On) |
10 | ressply1.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
11 | eqid 2779 | . . 3 ⊢ ((1o mPoly 𝑅) ↾s 𝐵) = ((1o mPoly 𝑅) ↾s 𝐵) | |
12 | 1, 2, 3, 7, 9, 10, 11 | ressmpladd 19951 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘(1o mPoly 𝐻))𝑌) = (𝑋(+g‘((1o mPoly 𝑅) ↾s 𝐵))𝑌)) |
13 | eqid 2779 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
14 | 4, 3, 13 | ply1plusg 20096 | . . 3 ⊢ (+g‘𝑈) = (+g‘(1o mPoly 𝐻)) |
15 | 14 | oveqi 6989 | . 2 ⊢ (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘(1o mPoly 𝐻))𝑌) |
16 | ressply1.s | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
17 | eqid 2779 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
18 | 16, 1, 17 | ply1plusg 20096 | . . . 4 ⊢ (+g‘𝑆) = (+g‘(1o mPoly 𝑅)) |
19 | 6 | fvexi 6513 | . . . . 5 ⊢ 𝐵 ∈ V |
20 | ressply1.p | . . . . . 6 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
21 | 20, 17 | ressplusg 16468 | . . . . 5 ⊢ (𝐵 ∈ V → (+g‘𝑆) = (+g‘𝑃)) |
22 | 19, 21 | ax-mp 5 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑃) |
23 | eqid 2779 | . . . . . 6 ⊢ (+g‘(1o mPoly 𝑅)) = (+g‘(1o mPoly 𝑅)) | |
24 | 11, 23 | ressplusg 16468 | . . . . 5 ⊢ (𝐵 ∈ V → (+g‘(1o mPoly 𝑅)) = (+g‘((1o mPoly 𝑅) ↾s 𝐵))) |
25 | 19, 24 | ax-mp 5 | . . . 4 ⊢ (+g‘(1o mPoly 𝑅)) = (+g‘((1o mPoly 𝑅) ↾s 𝐵)) |
26 | 18, 22, 25 | 3eqtr3i 2811 | . . 3 ⊢ (+g‘𝑃) = (+g‘((1o mPoly 𝑅) ↾s 𝐵)) |
27 | 26 | oveqi 6989 | . 2 ⊢ (𝑋(+g‘𝑃)𝑌) = (𝑋(+g‘((1o mPoly 𝑅) ↾s 𝐵))𝑌) |
28 | 12, 15, 27 | 3eqtr4g 2840 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3416 Oncon0 6029 ‘cfv 6188 (class class class)co 6976 1oc1o 7898 Basecbs 16339 ↾s cress 16340 +gcplusg 16421 SubRingcsubrg 19254 mPoly cmpl 19847 PwSer1cps1 20046 Poly1cpl1 20048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-dec 11912 df-uz 12059 df-fz 12709 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-sca 16437 df-vsca 16438 df-tset 16440 df-ple 16441 df-subg 18060 df-ring 19022 df-subrg 19256 df-psr 19850 df-mpl 19852 df-opsr 19854 df-psr1 20051 df-ply1 20053 |
This theorem is referenced by: gsumply1subr 20105 |
Copyright terms: Public domain | W3C validator |