Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmcomulpsr Structured version   Visualization version   GIF version

Theorem rhmcomulpsr 42539
Description: Show that the ring homomorphism in rhmpsr 42540 preserves multiplication. (Contributed by SN, 18-May-2025.)
Hypotheses
Ref Expression
rhmcomulpsr.p 𝑃 = (𝐼 mPwSer 𝑅)
rhmcomulpsr.q 𝑄 = (𝐼 mPwSer 𝑆)
rhmcomulpsr.b 𝐵 = (Base‘𝑃)
rhmcomulpsr.c 𝐶 = (Base‘𝑄)
rhmcomulpsr.1 · = (.r𝑃)
rhmcomulpsr.2 = (.r𝑄)
rhmcomulpsr.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
rhmcomulpsr.f (𝜑𝐹𝐵)
rhmcomulpsr.g (𝜑𝐺𝐵)
Assertion
Ref Expression
rhmcomulpsr (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))

Proof of Theorem rhmcomulpsr
Dummy variables 𝑑 𝑘 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmcomulpsr.h . . . . 5 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
2 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2729 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
42, 3rhmf 20394 . . . . 5 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
51, 4syl 17 . . . 4 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
6 eqid 2729 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 rhmrcl1 20385 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 rhmcomulpsr.p . . . . . 6 𝑃 = (𝐼 mPwSer 𝑅)
10 rhmcomulpsr.b . . . . . 6 𝐵 = (Base‘𝑃)
11 rhmcomulpsr.f . . . . . 6 (𝜑𝐹𝐵)
129, 2, 6, 10, 11psrelbas 21843 . . . . 5 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
13 rhmcomulpsr.g . . . . . 6 (𝜑𝐺𝐵)
149, 2, 6, 10, 13psrelbas 21843 . . . . 5 (𝜑𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
156, 8, 12, 14rhmpsrlem2 21850 . . . 4 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))) ∈ (Base‘𝑅))
165, 15cofmpt 7104 . . 3 (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))))
17 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
188ringcmnd 20193 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
1918adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
20 rhmrcl2 20386 . . . . . . . . . 10 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
211, 20syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
2221ringgrpd 20151 . . . . . . . 8 (𝜑𝑆 ∈ Grp)
2322grpmndd 18878 . . . . . . 7 (𝜑𝑆 ∈ Mnd)
2423adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑆 ∈ Mnd)
25 ovex 7420 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
2625rabex 5294 . . . . . . . 8 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
2726rabex 5294 . . . . . . 7 {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ∈ V
2827a1i 11 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ∈ V)
29 rhmghm 20393 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
30 ghmmhm 19158 . . . . . . . 8 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
311, 29, 303syl 18 . . . . . . 7 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
3231adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝐻 ∈ (𝑅 MndHom 𝑆))
33 eqid 2729 . . . . . . 7 (.r𝑅) = (.r𝑅)
348ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝑅 ∈ Ring)
35 elrabi 3654 . . . . . . . . 9 (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} → 𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3612ffvelcdmda 7056 . . . . . . . . 9 ((𝜑𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐹𝑑) ∈ (Base‘𝑅))
3735, 36sylan2 593 . . . . . . . 8 ((𝜑𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐹𝑑) ∈ (Base‘𝑅))
3837adantlr 715 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐹𝑑) ∈ (Base‘𝑅))
3914ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
40 eqid 2729 . . . . . . . . . . 11 {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} = {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}
416, 40psrbagconcl 21836 . . . . . . . . . 10 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘})
4241adantll 714 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘})
43 elrabi 3654 . . . . . . . . 9 ((𝑘f𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4442, 43syl 17 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4539, 44ffvelcdmd 7057 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐺‘(𝑘f𝑑)) ∈ (Base‘𝑅))
462, 33, 34, 38, 45ringcld 20169 . . . . . 6 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))) ∈ (Base‘𝑅))
476, 8, 12, 14rhmpsrlem1 21849 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) finSupp (0g𝑅))
482, 17, 19, 24, 28, 32, 46, 47gsummptmhm 19870 . . . . 5 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))))
491ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐻 ∈ (𝑅 RingHom 𝑆))
50 eqid 2729 . . . . . . . . . 10 (.r𝑆) = (.r𝑆)
512, 33, 50rhmmul 20395 . . . . . . . . 9 ((𝐻 ∈ (𝑅 RingHom 𝑆) ∧ (𝐹𝑑) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑘f𝑑)) ∈ (Base‘𝑅)) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5249, 38, 45, 51syl3anc 1373 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5312ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
5435adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
5553, 54fvco3d 6961 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐻𝐹)‘𝑑) = (𝐻‘(𝐹𝑑)))
5639, 44fvco3d 6961 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐻𝐺)‘(𝑘f𝑑)) = (𝐻‘(𝐺‘(𝑘f𝑑))))
5755, 56oveq12d 7405 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5852, 57eqtr4d 2767 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))
5958mpteq2dva 5200 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))) = (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))
6059oveq2d 7403 . . . . 5 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))))
6148, 60eqtr3d 2766 . . . 4 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))))
6261mpteq2dva 5200 . . 3 (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
6316, 62eqtrd 2764 . 2 (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
64 rhmcomulpsr.1 . . . 4 · = (.r𝑃)
659, 10, 33, 64, 6, 11, 13psrmulfval 21852 . . 3 (𝜑 → (𝐹 · 𝐺) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))))
6665coeq2d 5826 . 2 (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))))
67 rhmcomulpsr.q . . 3 𝑄 = (𝐼 mPwSer 𝑆)
68 rhmcomulpsr.c . . 3 𝐶 = (Base‘𝑄)
69 rhmcomulpsr.2 . . 3 = (.r𝑄)
709, 67, 10, 68, 31, 11mhmcopsr 42537 . . 3 (𝜑 → (𝐻𝐹) ∈ 𝐶)
719, 67, 10, 68, 31, 13mhmcopsr 42537 . . 3 (𝜑 → (𝐻𝐺) ∈ 𝐶)
7267, 68, 50, 69, 6, 70, 71psrmulfval 21852 . 2 (𝜑 → ((𝐻𝐹) (𝐻𝐺)) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
7363, 66, 723eqtr4d 2774 1 (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447   class class class wbr 5107  cmpt 5188  ccnv 5637  cima 5641  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  r cofr 7652  m cmap 8799  Fincfn 8918  cle 11209  cmin 11405  cn 12186  0cn0 12442  Basecbs 17179  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661   MndHom cmhm 18708   GrpHom cghm 19144  CMndccmn 19710  Ringcrg 20142   RingHom crh 20378   mPwSer cmps 21813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-ur 20091  df-ring 20144  df-rhm 20381  df-psr 21818
This theorem is referenced by:  rhmpsr  42540
  Copyright terms: Public domain W3C validator