Step | Hyp | Ref
| Expression |
1 | | rhmcomulpsr.h |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) |
2 | | eqid 2740 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | | eqid 2740 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
4 | 2, 3 | rhmf 20511 |
. . . . 5
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
5 | 1, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
6 | | eqid 2740 |
. . . . 5
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
7 | | rhmrcl1 20502 |
. . . . . 6
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
8 | 1, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | | rhmcomulpsr.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPwSer 𝑅) |
10 | | rhmcomulpsr.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑃) |
11 | | rhmcomulpsr.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
12 | 9, 2, 6, 10, 11 | psrelbas 21977 |
. . . . 5
⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
13 | | rhmcomulpsr.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
14 | 9, 2, 6, 10, 13 | psrelbas 21977 |
. . . . 5
⊢ (𝜑 → 𝐺:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
15 | 6, 8, 12, 14 | rhmpsrlem2 21984 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))) ∈ (Base‘𝑅)) |
16 | 5, 15 | cofmpt 7166 |
. . 3
⊢ (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))))))) |
17 | | eqid 2740 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
18 | 8 | ringcmnd 20307 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ CMnd) |
19 | 18 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd) |
20 | | rhmrcl2 20503 |
. . . . . . . . . 10
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
21 | 1, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ Ring) |
22 | 21 | ringgrpd 20269 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ Grp) |
23 | 22 | grpmndd 18986 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Mnd) |
24 | 23 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑆 ∈ Mnd) |
25 | | ovex 7481 |
. . . . . . . . 9
⊢
(ℕ0 ↑m 𝐼) ∈ V |
26 | 25 | rabex 5357 |
. . . . . . . 8
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V |
27 | 26 | rabex 5357 |
. . . . . . 7
⊢ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ∈ V |
28 | 27 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ∈ V) |
29 | | rhmghm 20510 |
. . . . . . . 8
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆)) |
30 | | ghmmhm 19266 |
. . . . . . . 8
⊢ (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
31 | 1, 29, 30 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
32 | 31 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
33 | | eqid 2740 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
34 | 8 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝑅 ∈ Ring) |
35 | | elrabi 3703 |
. . . . . . . . 9
⊢ (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} → 𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}) |
36 | 12 | ffvelcdmda 7118 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝐹‘𝑑) ∈ (Base‘𝑅)) |
37 | 35, 36 | sylan2 592 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝐹‘𝑑) ∈ (Base‘𝑅)) |
38 | 37 | adantlr 714 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝐹‘𝑑) ∈ (Base‘𝑅)) |
39 | 14 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝐺:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
40 | | eqid 2740 |
. . . . . . . . . . 11
⊢ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} = {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} |
41 | 6, 40 | psrbagconcl 21970 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) |
42 | 41 | adantll 713 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) |
43 | | elrabi 3703 |
. . . . . . . . 9
⊢ ((𝑘 ∘f −
𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} → (𝑘 ∘f − 𝑑) ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}) |
44 | 42, 43 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑑) ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}) |
45 | 39, 44 | ffvelcdmd 7119 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝐺‘(𝑘 ∘f − 𝑑)) ∈ (Base‘𝑅)) |
46 | 2, 33, 34, 38, 45 | ringcld 20286 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))) ∈ (Base‘𝑅)) |
47 | 6, 8, 12, 14 | rhmpsrlem1 21983 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))) finSupp
(0g‘𝑅)) |
48 | 2, 17, 19, 24, 28, 32, 46, 47 | gsummptmhm 19982 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (𝐻‘((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))))) = (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))))) |
49 | 1 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝐻 ∈ (𝑅 RingHom 𝑆)) |
50 | | eqid 2740 |
. . . . . . . . . 10
⊢
(.r‘𝑆) = (.r‘𝑆) |
51 | 2, 33, 50 | rhmmul 20512 |
. . . . . . . . 9
⊢ ((𝐻 ∈ (𝑅 RingHom 𝑆) ∧ (𝐹‘𝑑) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑘 ∘f − 𝑑)) ∈ (Base‘𝑅)) → (𝐻‘((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))) = ((𝐻‘(𝐹‘𝑑))(.r‘𝑆)(𝐻‘(𝐺‘(𝑘 ∘f − 𝑑))))) |
52 | 49, 38, 45, 51 | syl3anc 1371 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝐻‘((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))) = ((𝐻‘(𝐹‘𝑑))(.r‘𝑆)(𝐻‘(𝐺‘(𝑘 ∘f − 𝑑))))) |
53 | 12 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝐹:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
54 | 35 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}) |
55 | 53, 54 | fvco3d 7022 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → ((𝐻 ∘ 𝐹)‘𝑑) = (𝐻‘(𝐹‘𝑑))) |
56 | 39, 44 | fvco3d 7022 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → ((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑)) = (𝐻‘(𝐺‘(𝑘 ∘f − 𝑑)))) |
57 | 55, 56 | oveq12d 7466 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑))) = ((𝐻‘(𝐹‘𝑑))(.r‘𝑆)(𝐻‘(𝐺‘(𝑘 ∘f − 𝑑))))) |
58 | 52, 57 | eqtr4d 2783 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝐻‘((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))) = (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑)))) |
59 | 58 | mpteq2dva 5266 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (𝐻‘((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))) = (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑))))) |
60 | 59 | oveq2d 7464 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (𝐻‘((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑)))))) |
61 | 48, 60 | eqtr3d 2782 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑)))))) |
62 | 61 | mpteq2dva 5266 |
. . 3
⊢ (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑))))))) |
63 | 16, 62 | eqtrd 2780 |
. 2
⊢ (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑))))))) |
64 | | rhmcomulpsr.1 |
. . . 4
⊢ · =
(.r‘𝑃) |
65 | 9, 10, 33, 64, 6, 11, 13 | psrmulfval 21986 |
. . 3
⊢ (𝜑 → (𝐹 · 𝐺) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))))) |
66 | 65 | coeq2d 5887 |
. 2
⊢ (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))))))) |
67 | | rhmcomulpsr.q |
. . 3
⊢ 𝑄 = (𝐼 mPwSer 𝑆) |
68 | | rhmcomulpsr.c |
. . 3
⊢ 𝐶 = (Base‘𝑄) |
69 | | rhmcomulpsr.2 |
. . 3
⊢ ∙ =
(.r‘𝑄) |
70 | 9, 67, 10, 68, 31, 11 | mhmcopsr 42504 |
. . 3
⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
71 | 9, 67, 10, 68, 31, 13 | mhmcopsr 42504 |
. . 3
⊢ (𝜑 → (𝐻 ∘ 𝐺) ∈ 𝐶) |
72 | 67, 68, 50, 69, 6, 70, 71 | psrmulfval 21986 |
. 2
⊢ (𝜑 → ((𝐻 ∘ 𝐹) ∙ (𝐻 ∘ 𝐺)) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑))))))) |
73 | 63, 66, 72 | 3eqtr4d 2790 |
1
⊢ (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻 ∘ 𝐹) ∙ (𝐻 ∘ 𝐺))) |