Proof of Theorem iconstr
| Step | Hyp | Ref
| Expression |
| 1 | | ax-icn 11196 |
. . . . . . . 8
⊢ i ∈
ℂ |
| 2 | 1 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ i ∈ ℂ) |
| 3 | | 3nn0 12527 |
. . . . . . . . . . 11
⊢ 3 ∈
ℕ0 |
| 4 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ 3 ∈ ℕ0) |
| 5 | 4 | nn0red 12571 |
. . . . . . . . 9
⊢ (⊤
→ 3 ∈ ℝ) |
| 6 | 4 | nn0ge0d 12573 |
. . . . . . . . 9
⊢ (⊤
→ 0 ≤ 3) |
| 7 | 5, 6 | resqrtcld 15438 |
. . . . . . . 8
⊢ (⊤
→ (√‘3) ∈ ℝ) |
| 8 | 7 | recnd 11271 |
. . . . . . 7
⊢ (⊤
→ (√‘3) ∈ ℂ) |
| 9 | 2, 8 | absmuld 15475 |
. . . . . 6
⊢ (⊤
→ (abs‘(i · (√‘3))) = ((abs‘i) ·
(abs‘(√‘3)))) |
| 10 | | absi 15307 |
. . . . . . . 8
⊢
(abs‘i) = 1 |
| 11 | 7 | mptru 1546 |
. . . . . . . . 9
⊢
(√‘3) ∈ ℝ |
| 12 | | 3re 12328 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ |
| 13 | 6 | mptru 1546 |
. . . . . . . . . 10
⊢ 0 ≤
3 |
| 14 | | sqrtge0 15278 |
. . . . . . . . . 10
⊢ ((3
∈ ℝ ∧ 0 ≤ 3) → 0 ≤
(√‘3)) |
| 15 | 12, 13, 14 | mp2an 692 |
. . . . . . . . 9
⊢ 0 ≤
(√‘3) |
| 16 | | absid 15317 |
. . . . . . . . 9
⊢
(((√‘3) ∈ ℝ ∧ 0 ≤ (√‘3))
→ (abs‘(√‘3)) = (√‘3)) |
| 17 | 11, 15, 16 | mp2an 692 |
. . . . . . . 8
⊢
(abs‘(√‘3)) = (√‘3) |
| 18 | 10, 17 | oveq12i 7425 |
. . . . . . 7
⊢
((abs‘i) · (abs‘(√‘3))) = (1 ·
(√‘3)) |
| 19 | 8 | mptru 1546 |
. . . . . . . 8
⊢
(√‘3) ∈ ℂ |
| 20 | 19 | mullidi 11248 |
. . . . . . 7
⊢ (1
· (√‘3)) = (√‘3) |
| 21 | 18, 20 | eqtri 2757 |
. . . . . 6
⊢
((abs‘i) · (abs‘(√‘3))) =
(√‘3) |
| 22 | 9, 21 | eqtrdi 2785 |
. . . . 5
⊢ (⊤
→ (abs‘(i · (√‘3))) =
(√‘3)) |
| 23 | 22 | oveq2d 7429 |
. . . 4
⊢ (⊤
→ ((i · (√‘3)) / (abs‘(i ·
(√‘3)))) = ((i · (√‘3)) /
(√‘3))) |
| 24 | 4 | nn0cnd 12572 |
. . . . . . 7
⊢ (⊤
→ 3 ∈ ℂ) |
| 25 | | 3ne0 12354 |
. . . . . . 7
⊢ 3 ≠
0 |
| 26 | | cnsqrt00 15413 |
. . . . . . . . 9
⊢ (3 ∈
ℂ → ((√‘3) = 0 ↔ 3 = 0)) |
| 27 | 26 | necon3bid 2975 |
. . . . . . . 8
⊢ (3 ∈
ℂ → ((√‘3) ≠ 0 ↔ 3 ≠ 0)) |
| 28 | 27 | biimpar 477 |
. . . . . . 7
⊢ ((3
∈ ℂ ∧ 3 ≠ 0) → (√‘3) ≠
0) |
| 29 | 24, 25, 28 | sylancl 586 |
. . . . . 6
⊢ (⊤
→ (√‘3) ≠ 0) |
| 30 | 29 | mptru 1546 |
. . . . 5
⊢
(√‘3) ≠ 0 |
| 31 | 1, 19, 30 | divcan4i 11996 |
. . . 4
⊢ ((i
· (√‘3)) / (√‘3)) = i |
| 32 | 23, 31 | eqtrdi 2785 |
. . 3
⊢ (⊤
→ ((i · (√‘3)) / (abs‘(i ·
(√‘3)))) = i) |
| 33 | | 1nn0 12525 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
| 34 | 33 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 1 ∈ ℕ0) |
| 35 | 34 | nn0constr 33741 |
. . . . 5
⊢ (⊤
→ 1 ∈ Constr) |
| 36 | 4 | nn0constr 33741 |
. . . . 5
⊢ (⊤
→ 3 ∈ Constr) |
| 37 | 35 | constrnegcl 33743 |
. . . . 5
⊢ (⊤
→ -1 ∈ Constr) |
| 38 | 2, 8 | mulcld 11263 |
. . . . 5
⊢ (⊤
→ (i · (√‘3)) ∈ ℂ) |
| 39 | | 1nn 12259 |
. . . . . 6
⊢ 1 ∈
ℕ |
| 40 | | nnneneg 12283 |
. . . . . 6
⊢ (1 ∈
ℕ → 1 ≠ -1) |
| 41 | 39, 40 | mp1i 13 |
. . . . 5
⊢ (⊤
→ 1 ≠ -1) |
| 42 | | 1cnd 11238 |
. . . . . . . . 9
⊢ (⊤
→ 1 ∈ ℂ) |
| 43 | 42, 38 | subcld 11602 |
. . . . . . . 8
⊢ (⊤
→ (1 − (i · (√‘3))) ∈
ℂ) |
| 44 | 43 | abscld 15457 |
. . . . . . 7
⊢ (⊤
→ (abs‘(1 − (i · (√‘3)))) ∈
ℝ) |
| 45 | | 2re 12322 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
| 46 | 45 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 2 ∈ ℝ) |
| 47 | 43 | absge0d 15465 |
. . . . . . 7
⊢ (⊤
→ 0 ≤ (abs‘(1 − (i ·
(√‘3))))) |
| 48 | | 0le2 12350 |
. . . . . . . 8
⊢ 0 ≤
2 |
| 49 | 48 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 0 ≤ 2) |
| 50 | | 1red 11244 |
. . . . . . . . 9
⊢ (⊤
→ 1 ∈ ℝ) |
| 51 | 7, 50 | pythagreim 32689 |
. . . . . . . 8
⊢ (⊤
→ ((abs‘(1 − (i · (√‘3))))↑2) =
(((√‘3)↑2) + (1↑2))) |
| 52 | 24 | sqsqrtd 15460 |
. . . . . . . . . 10
⊢ (⊤
→ ((√‘3)↑2) = 3) |
| 53 | | sq1 14216 |
. . . . . . . . . . 11
⊢
(1↑2) = 1 |
| 54 | 53 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ (1↑2) = 1) |
| 55 | 52, 54 | oveq12d 7431 |
. . . . . . . . 9
⊢ (⊤
→ (((√‘3)↑2) + (1↑2)) = (3 + 1)) |
| 56 | | 3p1e4 12393 |
. . . . . . . . . 10
⊢ (3 + 1) =
4 |
| 57 | | sq2 14218 |
. . . . . . . . . 10
⊢
(2↑2) = 4 |
| 58 | 56, 57 | eqtr4i 2760 |
. . . . . . . . 9
⊢ (3 + 1) =
(2↑2) |
| 59 | 55, 58 | eqtrdi 2785 |
. . . . . . . 8
⊢ (⊤
→ (((√‘3)↑2) + (1↑2)) = (2↑2)) |
| 60 | 51, 59 | eqtrd 2769 |
. . . . . . 7
⊢ (⊤
→ ((abs‘(1 − (i · (√‘3))))↑2) =
(2↑2)) |
| 61 | 44, 46, 47, 49, 60 | sq11d 14279 |
. . . . . 6
⊢ (⊤
→ (abs‘(1 − (i · (√‘3)))) =
2) |
| 62 | 38, 42 | abssubd 15474 |
. . . . . 6
⊢ (⊤
→ (abs‘((i · (√‘3)) − 1)) = (abs‘(1
− (i · (√‘3))))) |
| 63 | 5, 50 | resubcld 11673 |
. . . . . . . 8
⊢ (⊤
→ (3 − 1) ∈ ℝ) |
| 64 | | 3m1e2 12376 |
. . . . . . . . 9
⊢ (3
− 1) = 2 |
| 65 | 49, 64 | breqtrrdi 5165 |
. . . . . . . 8
⊢ (⊤
→ 0 ≤ (3 − 1)) |
| 66 | 63, 65 | absidd 15443 |
. . . . . . 7
⊢ (⊤
→ (abs‘(3 − 1)) = (3 − 1)) |
| 67 | 66, 64 | eqtrdi 2785 |
. . . . . 6
⊢ (⊤
→ (abs‘(3 − 1)) = 2) |
| 68 | 61, 62, 67 | 3eqtr4d 2779 |
. . . . 5
⊢ (⊤
→ (abs‘((i · (√‘3)) − 1)) = (abs‘(3
− 1))) |
| 69 | 42 | negcld 11589 |
. . . . . . . . 9
⊢ (⊤
→ -1 ∈ ℂ) |
| 70 | 69, 38 | subcld 11602 |
. . . . . . . 8
⊢ (⊤
→ (-1 − (i · (√‘3))) ∈
ℂ) |
| 71 | 70 | abscld 15457 |
. . . . . . 7
⊢ (⊤
→ (abs‘(-1 − (i · (√‘3)))) ∈
ℝ) |
| 72 | 70 | absge0d 15465 |
. . . . . . 7
⊢ (⊤
→ 0 ≤ (abs‘(-1 − (i ·
(√‘3))))) |
| 73 | 50 | renegcld 11672 |
. . . . . . . . 9
⊢ (⊤
→ -1 ∈ ℝ) |
| 74 | 7, 73 | pythagreim 32689 |
. . . . . . . 8
⊢ (⊤
→ ((abs‘(-1 − (i · (√‘3))))↑2) =
(((√‘3)↑2) + (-1↑2))) |
| 75 | | neg1sqe1 14217 |
. . . . . . . . . . 11
⊢
(-1↑2) = 1 |
| 76 | 75 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ (-1↑2) = 1) |
| 77 | 52, 76 | oveq12d 7431 |
. . . . . . . . 9
⊢ (⊤
→ (((√‘3)↑2) + (-1↑2)) = (3 + 1)) |
| 78 | 77, 58 | eqtrdi 2785 |
. . . . . . . 8
⊢ (⊤
→ (((√‘3)↑2) + (-1↑2)) =
(2↑2)) |
| 79 | 74, 78 | eqtrd 2769 |
. . . . . . 7
⊢ (⊤
→ ((abs‘(-1 − (i · (√‘3))))↑2) =
(2↑2)) |
| 80 | 71, 46, 72, 49, 79 | sq11d 14279 |
. . . . . 6
⊢ (⊤
→ (abs‘(-1 − (i · (√‘3)))) =
2) |
| 81 | 38, 69 | abssubd 15474 |
. . . . . 6
⊢ (⊤
→ (abs‘((i · (√‘3)) − -1)) = (abs‘(-1
− (i · (√‘3))))) |
| 82 | 80, 81, 67 | 3eqtr4d 2779 |
. . . . 5
⊢ (⊤
→ (abs‘((i · (√‘3)) − -1)) = (abs‘(3
− 1))) |
| 83 | 35, 36, 35, 37, 36, 35, 38, 41, 68, 82 | constrcccl 33738 |
. . . 4
⊢ (⊤
→ (i · (√‘3)) ∈ Constr) |
| 84 | | ine0 11680 |
. . . . . 6
⊢ i ≠
0 |
| 85 | 84 | a1i 11 |
. . . . 5
⊢ (⊤
→ i ≠ 0) |
| 86 | 2, 8, 85, 29 | mulne0d 11897 |
. . . 4
⊢ (⊤
→ (i · (√‘3)) ≠ 0) |
| 87 | 83, 86 | constrdircl 33745 |
. . 3
⊢ (⊤
→ ((i · (√‘3)) / (abs‘(i ·
(√‘3)))) ∈ Constr) |
| 88 | 32, 87 | eqeltrrd 2834 |
. 2
⊢ (⊤
→ i ∈ Constr) |
| 89 | 88 | mptru 1546 |
1
⊢ i ∈
Constr |