Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubeslem2 Structured version   Visualization version   GIF version

Theorem 3cubeslem2 39357
Description: Lemma for 3cubes 39362. Used to show that the denominators in 3cubeslem4 39361 are nonzero. (Contributed by Igor Ieskov, 22-Jan-2024.)
Hypothesis
Ref Expression
3cubeslem1.a (𝜑𝐴 ∈ ℚ)
Assertion
Ref Expression
3cubeslem2 (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)

Proof of Theorem 3cubeslem2
StepHypRef Expression
1 3re 11715 . . . . . . . . 9 3 ∈ ℝ
21a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
32recnd 10666 . . . . . . 7 (𝜑 → 3 ∈ ℂ)
43mulid2d 10656 . . . . . 6 (𝜑 → (1 · 3) = 3)
54oveq2d 7169 . . . . 5 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + (1 · 3)) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + 3))
63sqcld 13506 . . . . . . . 8 (𝜑 → (3↑2) ∈ ℂ)
7 3cubeslem1.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℚ)
8 qre 12351 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
97, 8syl 17 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
109resqcld 13609 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℝ)
1110recnd 10666 . . . . . . . 8 (𝜑 → (𝐴↑2) ∈ ℂ)
126, 11mulcld 10658 . . . . . . 7 (𝜑 → ((3↑2) · (𝐴↑2)) ∈ ℂ)
139recnd 10666 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
143, 13mulcld 10658 . . . . . . 7 (𝜑 → (3 · 𝐴) ∈ ℂ)
1512, 14addcld 10657 . . . . . 6 (𝜑 → (((3↑2) · (𝐴↑2)) + (3 · 𝐴)) ∈ ℂ)
16 1cnd 10633 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1715, 16, 3adddird 10663 . . . . 5 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) · 3) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + (1 · 3)))
183, 13, 3mulassd 10661 . . . . . . . 8 (𝜑 → ((3 · 𝐴) · 3) = (3 · (𝐴 · 3)))
1918oveq2d 7169 . . . . . . 7 (𝜑 → ((((3↑2) · (𝐴↑2)) · 3) + ((3 · 𝐴) · 3)) = ((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))))
2019oveq1d 7168 . . . . . 6 (𝜑 → (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 𝐴) · 3)) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))) + 3))
2112, 14, 3adddird 10663 . . . . . . 7 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) = ((((3↑2) · (𝐴↑2)) · 3) + ((3 · 𝐴) · 3)))
2221oveq1d 7168 . . . . . 6 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 𝐴) · 3)) + 3))
233, 3, 13mulassd 10661 . . . . . . . . 9 (𝜑 → ((3 · 3) · 𝐴) = (3 · (3 · 𝐴)))
2423oveq2d 7169 . . . . . . . 8 (𝜑 → ((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) = ((((3↑2) · (𝐴↑2)) · 3) + (3 · (3 · 𝐴))))
2524oveq1d 7168 . . . . . . 7 (𝜑 → (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + (3 · (3 · 𝐴))) + 3))
2611, 3mulcomd 10659 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) · 3) = (3 · (𝐴↑2)))
2726oveq2d 7169 . . . . . . . . . 10 (𝜑 → ((3↑2) · ((𝐴↑2) · 3)) = ((3↑2) · (3 · (𝐴↑2))))
2827oveq1d 7168 . . . . . . . . 9 (𝜑 → (((3↑2) · ((𝐴↑2) · 3)) + ((3 · 3) · 𝐴)) = (((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)))
2928oveq1d 7168 . . . . . . . 8 (𝜑 → ((((3↑2) · ((𝐴↑2) · 3)) + ((3 · 3) · 𝐴)) + 3) = ((((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)) + 3))
306, 11, 3mulassd 10661 . . . . . . . . . 10 (𝜑 → (((3↑2) · (𝐴↑2)) · 3) = ((3↑2) · ((𝐴↑2) · 3)))
3130oveq1d 7168 . . . . . . . . 9 (𝜑 → ((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) = (((3↑2) · ((𝐴↑2) · 3)) + ((3 · 3) · 𝐴)))
3231oveq1d 7168 . . . . . . . 8 (𝜑 → (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) + 3) = ((((3↑2) · ((𝐴↑2) · 3)) + ((3 · 3) · 𝐴)) + 3))
33 df-3 11699 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
3433a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 = (2 + 1))
3534oveq2d 7169 . . . . . . . . . . . . . 14 (𝜑 → (3↑3) = (3↑(2 + 1)))
3635oveq1d 7168 . . . . . . . . . . . . 13 (𝜑 → ((3↑3) · (𝐴↑2)) = ((3↑(2 + 1)) · (𝐴↑2)))
3736oveq1d 7168 . . . . . . . . . . . 12 (𝜑 → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) = (((3↑(2 + 1)) · (𝐴↑2)) + ((3↑2) · 𝐴)))
3837oveq1d 7168 . . . . . . . . . . 11 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = ((((3↑(2 + 1)) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))
39 2nn0 11912 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
4039a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℕ0)
413, 40expp1d 13509 . . . . . . . . . . . . . 14 (𝜑 → (3↑(2 + 1)) = ((3↑2) · 3))
4241oveq1d 7168 . . . . . . . . . . . . 13 (𝜑 → ((3↑(2 + 1)) · (𝐴↑2)) = (((3↑2) · 3) · (𝐴↑2)))
4342oveq1d 7168 . . . . . . . . . . . 12 (𝜑 → (((3↑(2 + 1)) · (𝐴↑2)) + ((3↑2) · 𝐴)) = ((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)))
4443oveq1d 7168 . . . . . . . . . . 11 (𝜑 → ((((3↑(2 + 1)) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))
4538, 44eqtrd 2855 . . . . . . . . . 10 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))
463sqvald 13505 . . . . . . . . . . . . 13 (𝜑 → (3↑2) = (3 · 3))
4746oveq1d 7168 . . . . . . . . . . . 12 (𝜑 → ((3↑2) · 𝐴) = ((3 · 3) · 𝐴))
4847oveq2d 7169 . . . . . . . . . . 11 (𝜑 → ((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)) = ((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)))
4948oveq1d 7168 . . . . . . . . . 10 (𝜑 → (((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)) + 3))
5045, 49eqtrd 2855 . . . . . . . . 9 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)) + 3))
516, 3, 11mulassd 10661 . . . . . . . . . . 11 (𝜑 → (((3↑2) · 3) · (𝐴↑2)) = ((3↑2) · (3 · (𝐴↑2))))
5251oveq1d 7168 . . . . . . . . . 10 (𝜑 → ((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)) = (((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)))
5352oveq1d 7168 . . . . . . . . 9 (𝜑 → (((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)) + 3) = ((((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)) + 3))
5450, 53eqtrd 2855 . . . . . . . 8 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = ((((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)) + 3))
5529, 32, 543eqtr4rd 2866 . . . . . . 7 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) + 3))
5613, 3mulcomd 10659 . . . . . . . . . 10 (𝜑 → (𝐴 · 3) = (3 · 𝐴))
5756oveq2d 7169 . . . . . . . . 9 (𝜑 → (3 · (𝐴 · 3)) = (3 · (3 · 𝐴)))
5857oveq2d 7169 . . . . . . . 8 (𝜑 → ((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))) = ((((3↑2) · (𝐴↑2)) · 3) + (3 · (3 · 𝐴))))
5958oveq1d 7168 . . . . . . 7 (𝜑 → (((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + (3 · (3 · 𝐴))) + 3))
6025, 55, 593eqtr4d 2865 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))) + 3))
6120, 22, 603eqtr4rd 2866 . . . . 5 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + 3))
625, 17, 613eqtr4rd 2866 . . . 4 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) · 3))
6314mulid1d 10655 . . . . . . . . . 10 (𝜑 → ((3 · 𝐴) · 1) = (3 · 𝐴))
6463oveq2d 7169 . . . . . . . . 9 (𝜑 → (2 · ((3 · 𝐴) · 1)) = (2 · (3 · 𝐴)))
6564oveq2d 7169 . . . . . . . 8 (𝜑 → (((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) = (((3 · 𝐴)↑2) + (2 · (3 · 𝐴))))
6665oveq1d 7168 . . . . . . 7 (𝜑 → ((((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) + (1↑2)) = ((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)))
6766oveq1d 7168 . . . . . 6 (𝜑 → (((((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) + (1↑2)) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)) − (3 · 𝐴)))
6814, 16binom2d 39351 . . . . . . 7 (𝜑 → (((3 · 𝐴) + 1)↑2) = ((((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) + (1↑2)))
6968oveq1d 7168 . . . . . 6 (𝜑 → ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) + (1↑2)) − (3 · 𝐴)))
70142timesd 11878 . . . . . . . . . 10 (𝜑 → (2 · (3 · 𝐴)) = ((3 · 𝐴) + (3 · 𝐴)))
7170oveq2d 7169 . . . . . . . . 9 (𝜑 → (((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) = (((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))))
7271oveq1d 7168 . . . . . . . 8 (𝜑 → ((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + 1) = ((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1))
7372oveq1d 7168 . . . . . . 7 (𝜑 → (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + 1) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1) − (3 · 𝐴)))
74 sq1 13556 . . . . . . . . . 10 (1↑2) = 1
7574a1i 11 . . . . . . . . 9 (𝜑 → (1↑2) = 1)
7675oveq2d 7169 . . . . . . . 8 (𝜑 → ((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)) = ((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + 1))
7776oveq1d 7168 . . . . . . 7 (𝜑 → (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + 1) − (3 · 𝐴)))
7814, 16addcomd 10839 . . . . . . . . . . 11 (𝜑 → ((3 · 𝐴) + 1) = (1 + (3 · 𝐴)))
7978oveq2d 7169 . . . . . . . . . 10 (𝜑 → ((((3 · 𝐴)↑2) + (3 · 𝐴)) + ((3 · 𝐴) + 1)) = ((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))))
8079oveq1d 7168 . . . . . . . . 9 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + ((3 · 𝐴) + 1)) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))) − (3 · 𝐴)))
813, 13sqmuld 13520 . . . . . . . . . . . . 13 (𝜑 → ((3 · 𝐴)↑2) = ((3↑2) · (𝐴↑2)))
8281, 12eqeltrd 2912 . . . . . . . . . . . 12 (𝜑 → ((3 · 𝐴)↑2) ∈ ℂ)
8382, 14addcld 10657 . . . . . . . . . . 11 (𝜑 → (((3 · 𝐴)↑2) + (3 · 𝐴)) ∈ ℂ)
8483, 14, 16addassd 10660 . . . . . . . . . 10 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) = ((((3 · 𝐴)↑2) + (3 · 𝐴)) + ((3 · 𝐴) + 1)))
8584oveq1d 7168 . . . . . . . . 9 (𝜑 → ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (3 · 𝐴)) + ((3 · 𝐴) + 1)) − (3 · 𝐴)))
8615, 16addcld 10657 . . . . . . . . . . . 12 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) ∈ ℂ)
8786, 14, 14addsubassd 11014 . . . . . . . . . . 11 (𝜑 → ((((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + ((3 · 𝐴) − (3 · 𝐴))))
8881oveq1d 7168 . . . . . . . . . . . . . 14 (𝜑 → (((3 · 𝐴)↑2) + (3 · 𝐴)) = (((3↑2) · (𝐴↑2)) + (3 · 𝐴)))
8988oveq1d 7168 . . . . . . . . . . . . 13 (𝜑 → ((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) = ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1))
9089oveq1d 7168 . . . . . . . . . . . 12 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + (3 · 𝐴)))
9190oveq1d 7168 . . . . . . . . . . 11 (𝜑 → ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)) = ((((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)))
9214subidd 10982 . . . . . . . . . . . . 13 (𝜑 → ((3 · 𝐴) − (3 · 𝐴)) = 0)
9392oveq2d 7169 . . . . . . . . . . . 12 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + ((3 · 𝐴) − (3 · 𝐴))) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + 0))
9486addid1d 10837 . . . . . . . . . . . 12 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + 0) = ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1))
9593, 94eqtr2d 2856 . . . . . . . . . . 11 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + ((3 · 𝐴) − (3 · 𝐴))))
9687, 91, 953eqtr4rd 2866 . . . . . . . . . 10 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)))
9783, 16, 14addassd 10660 . . . . . . . . . . 11 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) = ((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))))
9897oveq1d 7168 . . . . . . . . . 10 (𝜑 → ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))) − (3 · 𝐴)))
9996, 98eqtrd 2855 . . . . . . . . 9 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))) − (3 · 𝐴)))
10080, 85, 993eqtr4rd 2866 . . . . . . . 8 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) − (3 · 𝐴)))
10182, 14, 14addassd 10660 . . . . . . . . . 10 (𝜑 → ((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) = (((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))))
102101oveq1d 7168 . . . . . . . . 9 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) = ((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1))
103102oveq1d 7168 . . . . . . . 8 (𝜑 → ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1) − (3 · 𝐴)))
104100, 103eqtrd 2855 . . . . . . 7 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = (((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1) − (3 · 𝐴)))
10573, 77, 1043eqtr4rd 2866 . . . . . 6 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)) − (3 · 𝐴)))
10667, 69, 1053eqtr4rd 2866 . . . . 5 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)))
107106oveq1d 7168 . . . 4 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) · 3) = (((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) · 3))
10862, 107eqtrd 2855 . . 3 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) · 3))
1092, 9remulcld 10668 . . . . . . . 8 (𝜑 → (3 · 𝐴) ∈ ℝ)
110 peano2re 10810 . . . . . . . 8 ((3 · 𝐴) ∈ ℝ → ((3 · 𝐴) + 1) ∈ ℝ)
111109, 110syl 17 . . . . . . 7 (𝜑 → ((3 · 𝐴) + 1) ∈ ℝ)
112111resqcld 13609 . . . . . 6 (𝜑 → (((3 · 𝐴) + 1)↑2) ∈ ℝ)
113112, 109resubcld 11065 . . . . 5 (𝜑 → ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) ∈ ℝ)
114113recnd 10666 . . . 4 (𝜑 → ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) ∈ ℂ)
115 3nn 11714 . . . . . . . 8 3 ∈ ℕ
116 nnq 12359 . . . . . . . 8 (3 ∈ ℕ → 3 ∈ ℚ)
117115, 116ax-mp 5 . . . . . . 7 3 ∈ ℚ
118 qmulcl 12364 . . . . . . 7 ((3 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (3 · 𝐴) ∈ ℚ)
119117, 7, 118sylancr 589 . . . . . 6 (𝜑 → (3 · 𝐴) ∈ ℚ)
1201193cubeslem1 39356 . . . . 5 (𝜑 → 0 < ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)))
121120gt0ne0d 11201 . . . 4 (𝜑 → ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) ≠ 0)
122 3ne0 11741 . . . . 5 3 ≠ 0
123122a1i 11 . . . 4 (𝜑 → 3 ≠ 0)
124114, 3, 121, 123mulne0d 11289 . . 3 (𝜑 → (((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) · 3) ≠ 0)
125108, 124eqnetrd 3082 . 2 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0)
126125neneqd 3020 1 (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1536  wcel 2113  wne 3015  (class class class)co 7153  cc 10532  cr 10533  0cc0 10534  1c1 10535   + caddc 10537   · cmul 10539  cmin 10867  cn 11635  2c2 11690  3c3 11691  0cn0 11895  cq 12346  cexp 13427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-div 11295  df-nn 11636  df-2 11698  df-3 11699  df-n0 11896  df-z 11980  df-uz 12242  df-q 12347  df-seq 13368  df-exp 13428
This theorem is referenced by:  3cubeslem4  39361  3cubes  39362
  Copyright terms: Public domain W3C validator