Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubeslem2 Structured version   Visualization version   GIF version

Theorem 3cubeslem2 42673
Description: Lemma for 3cubes 42678. Used to show that the denominators in 3cubeslem4 42677 are nonzero. (Contributed by Igor Ieskov, 22-Jan-2024.)
Hypothesis
Ref Expression
3cubeslem1.a (𝜑𝐴 ∈ ℚ)
Assertion
Ref Expression
3cubeslem2 (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)

Proof of Theorem 3cubeslem2
StepHypRef Expression
1 3re 12344 . . . . . . . . 9 3 ∈ ℝ
21a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
32recnd 11287 . . . . . . 7 (𝜑 → 3 ∈ ℂ)
43mullidd 11277 . . . . . 6 (𝜑 → (1 · 3) = 3)
54oveq2d 7447 . . . . 5 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + (1 · 3)) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + 3))
63sqcld 14181 . . . . . . . 8 (𝜑 → (3↑2) ∈ ℂ)
7 3cubeslem1.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℚ)
8 qre 12993 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
97, 8syl 17 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
109resqcld 14162 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℝ)
1110recnd 11287 . . . . . . . 8 (𝜑 → (𝐴↑2) ∈ ℂ)
126, 11mulcld 11279 . . . . . . 7 (𝜑 → ((3↑2) · (𝐴↑2)) ∈ ℂ)
139recnd 11287 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
143, 13mulcld 11279 . . . . . . 7 (𝜑 → (3 · 𝐴) ∈ ℂ)
1512, 14addcld 11278 . . . . . 6 (𝜑 → (((3↑2) · (𝐴↑2)) + (3 · 𝐴)) ∈ ℂ)
16 1cnd 11254 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1715, 16, 3adddird 11284 . . . . 5 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) · 3) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + (1 · 3)))
183, 13, 3mulassd 11282 . . . . . . . 8 (𝜑 → ((3 · 𝐴) · 3) = (3 · (𝐴 · 3)))
1918oveq2d 7447 . . . . . . 7 (𝜑 → ((((3↑2) · (𝐴↑2)) · 3) + ((3 · 𝐴) · 3)) = ((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))))
2019oveq1d 7446 . . . . . 6 (𝜑 → (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 𝐴) · 3)) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))) + 3))
2112, 14, 3adddird 11284 . . . . . . 7 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) = ((((3↑2) · (𝐴↑2)) · 3) + ((3 · 𝐴) · 3)))
2221oveq1d 7446 . . . . . 6 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 𝐴) · 3)) + 3))
233, 3, 13mulassd 11282 . . . . . . . . 9 (𝜑 → ((3 · 3) · 𝐴) = (3 · (3 · 𝐴)))
2423oveq2d 7447 . . . . . . . 8 (𝜑 → ((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) = ((((3↑2) · (𝐴↑2)) · 3) + (3 · (3 · 𝐴))))
2524oveq1d 7446 . . . . . . 7 (𝜑 → (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + (3 · (3 · 𝐴))) + 3))
2611, 3mulcomd 11280 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) · 3) = (3 · (𝐴↑2)))
2726oveq2d 7447 . . . . . . . . . 10 (𝜑 → ((3↑2) · ((𝐴↑2) · 3)) = ((3↑2) · (3 · (𝐴↑2))))
2827oveq1d 7446 . . . . . . . . 9 (𝜑 → (((3↑2) · ((𝐴↑2) · 3)) + ((3 · 3) · 𝐴)) = (((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)))
2928oveq1d 7446 . . . . . . . 8 (𝜑 → ((((3↑2) · ((𝐴↑2) · 3)) + ((3 · 3) · 𝐴)) + 3) = ((((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)) + 3))
306, 11, 3mulassd 11282 . . . . . . . . . 10 (𝜑 → (((3↑2) · (𝐴↑2)) · 3) = ((3↑2) · ((𝐴↑2) · 3)))
3130oveq1d 7446 . . . . . . . . 9 (𝜑 → ((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) = (((3↑2) · ((𝐴↑2) · 3)) + ((3 · 3) · 𝐴)))
3231oveq1d 7446 . . . . . . . 8 (𝜑 → (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) + 3) = ((((3↑2) · ((𝐴↑2) · 3)) + ((3 · 3) · 𝐴)) + 3))
33 df-3 12328 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
3433a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 = (2 + 1))
3534oveq2d 7447 . . . . . . . . . . . . . 14 (𝜑 → (3↑3) = (3↑(2 + 1)))
3635oveq1d 7446 . . . . . . . . . . . . 13 (𝜑 → ((3↑3) · (𝐴↑2)) = ((3↑(2 + 1)) · (𝐴↑2)))
3736oveq1d 7446 . . . . . . . . . . . 12 (𝜑 → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) = (((3↑(2 + 1)) · (𝐴↑2)) + ((3↑2) · 𝐴)))
3837oveq1d 7446 . . . . . . . . . . 11 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = ((((3↑(2 + 1)) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))
39 2nn0 12541 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
4039a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℕ0)
413, 40expp1d 14184 . . . . . . . . . . . . . 14 (𝜑 → (3↑(2 + 1)) = ((3↑2) · 3))
4241oveq1d 7446 . . . . . . . . . . . . 13 (𝜑 → ((3↑(2 + 1)) · (𝐴↑2)) = (((3↑2) · 3) · (𝐴↑2)))
4342oveq1d 7446 . . . . . . . . . . . 12 (𝜑 → (((3↑(2 + 1)) · (𝐴↑2)) + ((3↑2) · 𝐴)) = ((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)))
4443oveq1d 7446 . . . . . . . . . . 11 (𝜑 → ((((3↑(2 + 1)) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))
4538, 44eqtrd 2775 . . . . . . . . . 10 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))
463sqvald 14180 . . . . . . . . . . . . 13 (𝜑 → (3↑2) = (3 · 3))
4746oveq1d 7446 . . . . . . . . . . . 12 (𝜑 → ((3↑2) · 𝐴) = ((3 · 3) · 𝐴))
4847oveq2d 7447 . . . . . . . . . . 11 (𝜑 → ((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)) = ((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)))
4948oveq1d 7446 . . . . . . . . . 10 (𝜑 → (((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)) + 3))
5045, 49eqtrd 2775 . . . . . . . . 9 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)) + 3))
516, 3, 11mulassd 11282 . . . . . . . . . . 11 (𝜑 → (((3↑2) · 3) · (𝐴↑2)) = ((3↑2) · (3 · (𝐴↑2))))
5251oveq1d 7446 . . . . . . . . . 10 (𝜑 → ((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)) = (((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)))
5352oveq1d 7446 . . . . . . . . 9 (𝜑 → (((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)) + 3) = ((((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)) + 3))
5450, 53eqtrd 2775 . . . . . . . 8 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = ((((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)) + 3))
5529, 32, 543eqtr4rd 2786 . . . . . . 7 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) + 3))
5613, 3mulcomd 11280 . . . . . . . . . 10 (𝜑 → (𝐴 · 3) = (3 · 𝐴))
5756oveq2d 7447 . . . . . . . . 9 (𝜑 → (3 · (𝐴 · 3)) = (3 · (3 · 𝐴)))
5857oveq2d 7447 . . . . . . . 8 (𝜑 → ((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))) = ((((3↑2) · (𝐴↑2)) · 3) + (3 · (3 · 𝐴))))
5958oveq1d 7446 . . . . . . 7 (𝜑 → (((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + (3 · (3 · 𝐴))) + 3))
6025, 55, 593eqtr4d 2785 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))) + 3))
6120, 22, 603eqtr4rd 2786 . . . . 5 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + 3))
625, 17, 613eqtr4rd 2786 . . . 4 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) · 3))
6314mulridd 11276 . . . . . . . . . 10 (𝜑 → ((3 · 𝐴) · 1) = (3 · 𝐴))
6463oveq2d 7447 . . . . . . . . 9 (𝜑 → (2 · ((3 · 𝐴) · 1)) = (2 · (3 · 𝐴)))
6564oveq2d 7447 . . . . . . . 8 (𝜑 → (((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) = (((3 · 𝐴)↑2) + (2 · (3 · 𝐴))))
6665oveq1d 7446 . . . . . . 7 (𝜑 → ((((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) + (1↑2)) = ((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)))
6766oveq1d 7446 . . . . . 6 (𝜑 → (((((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) + (1↑2)) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)) − (3 · 𝐴)))
6814, 16binom2d 14254 . . . . . . 7 (𝜑 → (((3 · 𝐴) + 1)↑2) = ((((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) + (1↑2)))
6968oveq1d 7446 . . . . . 6 (𝜑 → ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) + (1↑2)) − (3 · 𝐴)))
70142timesd 12507 . . . . . . . . . 10 (𝜑 → (2 · (3 · 𝐴)) = ((3 · 𝐴) + (3 · 𝐴)))
7170oveq2d 7447 . . . . . . . . 9 (𝜑 → (((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) = (((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))))
7271oveq1d 7446 . . . . . . . 8 (𝜑 → ((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + 1) = ((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1))
7372oveq1d 7446 . . . . . . 7 (𝜑 → (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + 1) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1) − (3 · 𝐴)))
74 sq1 14231 . . . . . . . . . 10 (1↑2) = 1
7574a1i 11 . . . . . . . . 9 (𝜑 → (1↑2) = 1)
7675oveq2d 7447 . . . . . . . 8 (𝜑 → ((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)) = ((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + 1))
7776oveq1d 7446 . . . . . . 7 (𝜑 → (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + 1) − (3 · 𝐴)))
7814, 16addcomd 11461 . . . . . . . . . . 11 (𝜑 → ((3 · 𝐴) + 1) = (1 + (3 · 𝐴)))
7978oveq2d 7447 . . . . . . . . . 10 (𝜑 → ((((3 · 𝐴)↑2) + (3 · 𝐴)) + ((3 · 𝐴) + 1)) = ((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))))
8079oveq1d 7446 . . . . . . . . 9 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + ((3 · 𝐴) + 1)) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))) − (3 · 𝐴)))
813, 13sqmuld 14195 . . . . . . . . . . . . 13 (𝜑 → ((3 · 𝐴)↑2) = ((3↑2) · (𝐴↑2)))
8281, 12eqeltrd 2839 . . . . . . . . . . . 12 (𝜑 → ((3 · 𝐴)↑2) ∈ ℂ)
8382, 14addcld 11278 . . . . . . . . . . 11 (𝜑 → (((3 · 𝐴)↑2) + (3 · 𝐴)) ∈ ℂ)
8483, 14, 16addassd 11281 . . . . . . . . . 10 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) = ((((3 · 𝐴)↑2) + (3 · 𝐴)) + ((3 · 𝐴) + 1)))
8584oveq1d 7446 . . . . . . . . 9 (𝜑 → ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (3 · 𝐴)) + ((3 · 𝐴) + 1)) − (3 · 𝐴)))
8615, 16addcld 11278 . . . . . . . . . . . 12 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) ∈ ℂ)
8786, 14, 14addsubassd 11638 . . . . . . . . . . 11 (𝜑 → ((((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + ((3 · 𝐴) − (3 · 𝐴))))
8881oveq1d 7446 . . . . . . . . . . . . . 14 (𝜑 → (((3 · 𝐴)↑2) + (3 · 𝐴)) = (((3↑2) · (𝐴↑2)) + (3 · 𝐴)))
8988oveq1d 7446 . . . . . . . . . . . . 13 (𝜑 → ((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) = ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1))
9089oveq1d 7446 . . . . . . . . . . . 12 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + (3 · 𝐴)))
9190oveq1d 7446 . . . . . . . . . . 11 (𝜑 → ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)) = ((((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)))
9214subidd 11606 . . . . . . . . . . . . 13 (𝜑 → ((3 · 𝐴) − (3 · 𝐴)) = 0)
9392oveq2d 7447 . . . . . . . . . . . 12 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + ((3 · 𝐴) − (3 · 𝐴))) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + 0))
9486addridd 11459 . . . . . . . . . . . 12 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + 0) = ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1))
9593, 94eqtr2d 2776 . . . . . . . . . . 11 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + ((3 · 𝐴) − (3 · 𝐴))))
9687, 91, 953eqtr4rd 2786 . . . . . . . . . 10 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)))
9783, 16, 14addassd 11281 . . . . . . . . . . 11 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) = ((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))))
9897oveq1d 7446 . . . . . . . . . 10 (𝜑 → ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))) − (3 · 𝐴)))
9996, 98eqtrd 2775 . . . . . . . . 9 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))) − (3 · 𝐴)))
10080, 85, 993eqtr4rd 2786 . . . . . . . 8 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) − (3 · 𝐴)))
10182, 14, 14addassd 11281 . . . . . . . . . 10 (𝜑 → ((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) = (((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))))
102101oveq1d 7446 . . . . . . . . 9 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) = ((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1))
103102oveq1d 7446 . . . . . . . 8 (𝜑 → ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1) − (3 · 𝐴)))
104100, 103eqtrd 2775 . . . . . . 7 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = (((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1) − (3 · 𝐴)))
10573, 77, 1043eqtr4rd 2786 . . . . . 6 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)) − (3 · 𝐴)))
10667, 69, 1053eqtr4rd 2786 . . . . 5 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)))
107106oveq1d 7446 . . . 4 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) · 3) = (((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) · 3))
10862, 107eqtrd 2775 . . 3 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) · 3))
1092, 9remulcld 11289 . . . . . . . 8 (𝜑 → (3 · 𝐴) ∈ ℝ)
110 peano2re 11432 . . . . . . . 8 ((3 · 𝐴) ∈ ℝ → ((3 · 𝐴) + 1) ∈ ℝ)
111109, 110syl 17 . . . . . . 7 (𝜑 → ((3 · 𝐴) + 1) ∈ ℝ)
112111resqcld 14162 . . . . . 6 (𝜑 → (((3 · 𝐴) + 1)↑2) ∈ ℝ)
113112, 109resubcld 11689 . . . . 5 (𝜑 → ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) ∈ ℝ)
114113recnd 11287 . . . 4 (𝜑 → ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) ∈ ℂ)
115 3nn 12343 . . . . . . . 8 3 ∈ ℕ
116 nnq 13002 . . . . . . . 8 (3 ∈ ℕ → 3 ∈ ℚ)
117115, 116ax-mp 5 . . . . . . 7 3 ∈ ℚ
118 qmulcl 13007 . . . . . . 7 ((3 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (3 · 𝐴) ∈ ℚ)
119117, 7, 118sylancr 587 . . . . . 6 (𝜑 → (3 · 𝐴) ∈ ℚ)
1201193cubeslem1 42672 . . . . 5 (𝜑 → 0 < ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)))
121120gt0ne0d 11825 . . . 4 (𝜑 → ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) ≠ 0)
122 3ne0 12370 . . . . 5 3 ≠ 0
123122a1i 11 . . . 4 (𝜑 → 3 ≠ 0)
124114, 3, 121, 123mulne0d 11913 . . 3 (𝜑 → (((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) · 3) ≠ 0)
125108, 124eqnetrd 3006 . 2 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0)
126125neneqd 2943 1 (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  wne 2938  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  cn 12264  2c2 12319  3c3 12320  0cn0 12524  cq 12988  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-seq 14040  df-exp 14100
This theorem is referenced by:  3cubeslem4  42677  3cubes  42678
  Copyright terms: Public domain W3C validator