Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubeslem2 Structured version   Visualization version   GIF version

Theorem 3cubeslem2 42105
Description: Lemma for 3cubes 42110. Used to show that the denominators in 3cubeslem4 42109 are nonzero. (Contributed by Igor Ieskov, 22-Jan-2024.)
Hypothesis
Ref Expression
3cubeslem1.a (𝜑𝐴 ∈ ℚ)
Assertion
Ref Expression
3cubeslem2 (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)

Proof of Theorem 3cubeslem2
StepHypRef Expression
1 3re 12323 . . . . . . . . 9 3 ∈ ℝ
21a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
32recnd 11273 . . . . . . 7 (𝜑 → 3 ∈ ℂ)
43mullidd 11263 . . . . . 6 (𝜑 → (1 · 3) = 3)
54oveq2d 7436 . . . . 5 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + (1 · 3)) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + 3))
63sqcld 14141 . . . . . . . 8 (𝜑 → (3↑2) ∈ ℂ)
7 3cubeslem1.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℚ)
8 qre 12968 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
97, 8syl 17 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
109resqcld 14122 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℝ)
1110recnd 11273 . . . . . . . 8 (𝜑 → (𝐴↑2) ∈ ℂ)
126, 11mulcld 11265 . . . . . . 7 (𝜑 → ((3↑2) · (𝐴↑2)) ∈ ℂ)
139recnd 11273 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
143, 13mulcld 11265 . . . . . . 7 (𝜑 → (3 · 𝐴) ∈ ℂ)
1512, 14addcld 11264 . . . . . 6 (𝜑 → (((3↑2) · (𝐴↑2)) + (3 · 𝐴)) ∈ ℂ)
16 1cnd 11240 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1715, 16, 3adddird 11270 . . . . 5 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) · 3) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + (1 · 3)))
183, 13, 3mulassd 11268 . . . . . . . 8 (𝜑 → ((3 · 𝐴) · 3) = (3 · (𝐴 · 3)))
1918oveq2d 7436 . . . . . . 7 (𝜑 → ((((3↑2) · (𝐴↑2)) · 3) + ((3 · 𝐴) · 3)) = ((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))))
2019oveq1d 7435 . . . . . 6 (𝜑 → (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 𝐴) · 3)) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))) + 3))
2112, 14, 3adddird 11270 . . . . . . 7 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) = ((((3↑2) · (𝐴↑2)) · 3) + ((3 · 𝐴) · 3)))
2221oveq1d 7435 . . . . . 6 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 𝐴) · 3)) + 3))
233, 3, 13mulassd 11268 . . . . . . . . 9 (𝜑 → ((3 · 3) · 𝐴) = (3 · (3 · 𝐴)))
2423oveq2d 7436 . . . . . . . 8 (𝜑 → ((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) = ((((3↑2) · (𝐴↑2)) · 3) + (3 · (3 · 𝐴))))
2524oveq1d 7435 . . . . . . 7 (𝜑 → (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + (3 · (3 · 𝐴))) + 3))
2611, 3mulcomd 11266 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) · 3) = (3 · (𝐴↑2)))
2726oveq2d 7436 . . . . . . . . . 10 (𝜑 → ((3↑2) · ((𝐴↑2) · 3)) = ((3↑2) · (3 · (𝐴↑2))))
2827oveq1d 7435 . . . . . . . . 9 (𝜑 → (((3↑2) · ((𝐴↑2) · 3)) + ((3 · 3) · 𝐴)) = (((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)))
2928oveq1d 7435 . . . . . . . 8 (𝜑 → ((((3↑2) · ((𝐴↑2) · 3)) + ((3 · 3) · 𝐴)) + 3) = ((((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)) + 3))
306, 11, 3mulassd 11268 . . . . . . . . . 10 (𝜑 → (((3↑2) · (𝐴↑2)) · 3) = ((3↑2) · ((𝐴↑2) · 3)))
3130oveq1d 7435 . . . . . . . . 9 (𝜑 → ((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) = (((3↑2) · ((𝐴↑2) · 3)) + ((3 · 3) · 𝐴)))
3231oveq1d 7435 . . . . . . . 8 (𝜑 → (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) + 3) = ((((3↑2) · ((𝐴↑2) · 3)) + ((3 · 3) · 𝐴)) + 3))
33 df-3 12307 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
3433a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 = (2 + 1))
3534oveq2d 7436 . . . . . . . . . . . . . 14 (𝜑 → (3↑3) = (3↑(2 + 1)))
3635oveq1d 7435 . . . . . . . . . . . . 13 (𝜑 → ((3↑3) · (𝐴↑2)) = ((3↑(2 + 1)) · (𝐴↑2)))
3736oveq1d 7435 . . . . . . . . . . . 12 (𝜑 → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) = (((3↑(2 + 1)) · (𝐴↑2)) + ((3↑2) · 𝐴)))
3837oveq1d 7435 . . . . . . . . . . 11 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = ((((3↑(2 + 1)) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))
39 2nn0 12520 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
4039a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℕ0)
413, 40expp1d 14144 . . . . . . . . . . . . . 14 (𝜑 → (3↑(2 + 1)) = ((3↑2) · 3))
4241oveq1d 7435 . . . . . . . . . . . . 13 (𝜑 → ((3↑(2 + 1)) · (𝐴↑2)) = (((3↑2) · 3) · (𝐴↑2)))
4342oveq1d 7435 . . . . . . . . . . . 12 (𝜑 → (((3↑(2 + 1)) · (𝐴↑2)) + ((3↑2) · 𝐴)) = ((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)))
4443oveq1d 7435 . . . . . . . . . . 11 (𝜑 → ((((3↑(2 + 1)) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))
4538, 44eqtrd 2768 . . . . . . . . . 10 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))
463sqvald 14140 . . . . . . . . . . . . 13 (𝜑 → (3↑2) = (3 · 3))
4746oveq1d 7435 . . . . . . . . . . . 12 (𝜑 → ((3↑2) · 𝐴) = ((3 · 3) · 𝐴))
4847oveq2d 7436 . . . . . . . . . . 11 (𝜑 → ((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)) = ((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)))
4948oveq1d 7435 . . . . . . . . . 10 (𝜑 → (((((3↑2) · 3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)) + 3))
5045, 49eqtrd 2768 . . . . . . . . 9 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)) + 3))
516, 3, 11mulassd 11268 . . . . . . . . . . 11 (𝜑 → (((3↑2) · 3) · (𝐴↑2)) = ((3↑2) · (3 · (𝐴↑2))))
5251oveq1d 7435 . . . . . . . . . 10 (𝜑 → ((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)) = (((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)))
5352oveq1d 7435 . . . . . . . . 9 (𝜑 → (((((3↑2) · 3) · (𝐴↑2)) + ((3 · 3) · 𝐴)) + 3) = ((((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)) + 3))
5450, 53eqtrd 2768 . . . . . . . 8 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = ((((3↑2) · (3 · (𝐴↑2))) + ((3 · 3) · 𝐴)) + 3))
5529, 32, 543eqtr4rd 2779 . . . . . . 7 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + ((3 · 3) · 𝐴)) + 3))
5613, 3mulcomd 11266 . . . . . . . . . 10 (𝜑 → (𝐴 · 3) = (3 · 𝐴))
5756oveq2d 7436 . . . . . . . . 9 (𝜑 → (3 · (𝐴 · 3)) = (3 · (3 · 𝐴)))
5857oveq2d 7436 . . . . . . . 8 (𝜑 → ((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))) = ((((3↑2) · (𝐴↑2)) · 3) + (3 · (3 · 𝐴))))
5958oveq1d 7435 . . . . . . 7 (𝜑 → (((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + (3 · (3 · 𝐴))) + 3))
6025, 55, 593eqtr4d 2778 . . . . . 6 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) · 3) + (3 · (𝐴 · 3))) + 3))
6120, 22, 603eqtr4rd 2779 . . . . 5 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) · 3) + 3))
625, 17, 613eqtr4rd 2779 . . . 4 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) · 3))
6314mulridd 11262 . . . . . . . . . 10 (𝜑 → ((3 · 𝐴) · 1) = (3 · 𝐴))
6463oveq2d 7436 . . . . . . . . 9 (𝜑 → (2 · ((3 · 𝐴) · 1)) = (2 · (3 · 𝐴)))
6564oveq2d 7436 . . . . . . . 8 (𝜑 → (((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) = (((3 · 𝐴)↑2) + (2 · (3 · 𝐴))))
6665oveq1d 7435 . . . . . . 7 (𝜑 → ((((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) + (1↑2)) = ((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)))
6766oveq1d 7435 . . . . . 6 (𝜑 → (((((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) + (1↑2)) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)) − (3 · 𝐴)))
6814, 16binom2d 42099 . . . . . . 7 (𝜑 → (((3 · 𝐴) + 1)↑2) = ((((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) + (1↑2)))
6968oveq1d 7435 . . . . . 6 (𝜑 → ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (2 · ((3 · 𝐴) · 1))) + (1↑2)) − (3 · 𝐴)))
70142timesd 12486 . . . . . . . . . 10 (𝜑 → (2 · (3 · 𝐴)) = ((3 · 𝐴) + (3 · 𝐴)))
7170oveq2d 7436 . . . . . . . . 9 (𝜑 → (((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) = (((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))))
7271oveq1d 7435 . . . . . . . 8 (𝜑 → ((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + 1) = ((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1))
7372oveq1d 7435 . . . . . . 7 (𝜑 → (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + 1) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1) − (3 · 𝐴)))
74 sq1 14191 . . . . . . . . . 10 (1↑2) = 1
7574a1i 11 . . . . . . . . 9 (𝜑 → (1↑2) = 1)
7675oveq2d 7436 . . . . . . . 8 (𝜑 → ((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)) = ((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + 1))
7776oveq1d 7435 . . . . . . 7 (𝜑 → (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + 1) − (3 · 𝐴)))
7814, 16addcomd 11447 . . . . . . . . . . 11 (𝜑 → ((3 · 𝐴) + 1) = (1 + (3 · 𝐴)))
7978oveq2d 7436 . . . . . . . . . 10 (𝜑 → ((((3 · 𝐴)↑2) + (3 · 𝐴)) + ((3 · 𝐴) + 1)) = ((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))))
8079oveq1d 7435 . . . . . . . . 9 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + ((3 · 𝐴) + 1)) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))) − (3 · 𝐴)))
813, 13sqmuld 14155 . . . . . . . . . . . . 13 (𝜑 → ((3 · 𝐴)↑2) = ((3↑2) · (𝐴↑2)))
8281, 12eqeltrd 2829 . . . . . . . . . . . 12 (𝜑 → ((3 · 𝐴)↑2) ∈ ℂ)
8382, 14addcld 11264 . . . . . . . . . . 11 (𝜑 → (((3 · 𝐴)↑2) + (3 · 𝐴)) ∈ ℂ)
8483, 14, 16addassd 11267 . . . . . . . . . 10 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) = ((((3 · 𝐴)↑2) + (3 · 𝐴)) + ((3 · 𝐴) + 1)))
8584oveq1d 7435 . . . . . . . . 9 (𝜑 → ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (3 · 𝐴)) + ((3 · 𝐴) + 1)) − (3 · 𝐴)))
8615, 16addcld 11264 . . . . . . . . . . . 12 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) ∈ ℂ)
8786, 14, 14addsubassd 11622 . . . . . . . . . . 11 (𝜑 → ((((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + ((3 · 𝐴) − (3 · 𝐴))))
8881oveq1d 7435 . . . . . . . . . . . . . 14 (𝜑 → (((3 · 𝐴)↑2) + (3 · 𝐴)) = (((3↑2) · (𝐴↑2)) + (3 · 𝐴)))
8988oveq1d 7435 . . . . . . . . . . . . 13 (𝜑 → ((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) = ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1))
9089oveq1d 7435 . . . . . . . . . . . 12 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + (3 · 𝐴)))
9190oveq1d 7435 . . . . . . . . . . 11 (𝜑 → ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)) = ((((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)))
9214subidd 11590 . . . . . . . . . . . . 13 (𝜑 → ((3 · 𝐴) − (3 · 𝐴)) = 0)
9392oveq2d 7436 . . . . . . . . . . . 12 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + ((3 · 𝐴) − (3 · 𝐴))) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + 0))
9486addridd 11445 . . . . . . . . . . . 12 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + 0) = ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1))
9593, 94eqtr2d 2769 . . . . . . . . . . 11 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) + ((3 · 𝐴) − (3 · 𝐴))))
9687, 91, 953eqtr4rd 2779 . . . . . . . . . 10 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)))
9783, 16, 14addassd 11267 . . . . . . . . . . 11 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) = ((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))))
9897oveq1d 7435 . . . . . . . . . 10 (𝜑 → ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + 1) + (3 · 𝐴)) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))) − (3 · 𝐴)))
9996, 98eqtrd 2768 . . . . . . . . 9 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (1 + (3 · 𝐴))) − (3 · 𝐴)))
10080, 85, 993eqtr4rd 2779 . . . . . . . 8 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) − (3 · 𝐴)))
10182, 14, 14addassd 11267 . . . . . . . . . 10 (𝜑 → ((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) = (((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))))
102101oveq1d 7435 . . . . . . . . 9 (𝜑 → (((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) = ((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1))
103102oveq1d 7435 . . . . . . . 8 (𝜑 → ((((((3 · 𝐴)↑2) + (3 · 𝐴)) + (3 · 𝐴)) + 1) − (3 · 𝐴)) = (((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1) − (3 · 𝐴)))
104100, 103eqtrd 2768 . . . . . . 7 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = (((((3 · 𝐴)↑2) + ((3 · 𝐴) + (3 · 𝐴))) + 1) − (3 · 𝐴)))
10573, 77, 1043eqtr4rd 2779 . . . . . 6 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = (((((3 · 𝐴)↑2) + (2 · (3 · 𝐴))) + (1↑2)) − (3 · 𝐴)))
10667, 69, 1053eqtr4rd 2779 . . . . 5 (𝜑 → ((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) = ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)))
107106oveq1d 7435 . . . 4 (𝜑 → (((((3↑2) · (𝐴↑2)) + (3 · 𝐴)) + 1) · 3) = (((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) · 3))
10862, 107eqtrd 2768 . . 3 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = (((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) · 3))
1092, 9remulcld 11275 . . . . . . . 8 (𝜑 → (3 · 𝐴) ∈ ℝ)
110 peano2re 11418 . . . . . . . 8 ((3 · 𝐴) ∈ ℝ → ((3 · 𝐴) + 1) ∈ ℝ)
111109, 110syl 17 . . . . . . 7 (𝜑 → ((3 · 𝐴) + 1) ∈ ℝ)
112111resqcld 14122 . . . . . 6 (𝜑 → (((3 · 𝐴) + 1)↑2) ∈ ℝ)
113112, 109resubcld 11673 . . . . 5 (𝜑 → ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) ∈ ℝ)
114113recnd 11273 . . . 4 (𝜑 → ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) ∈ ℂ)
115 3nn 12322 . . . . . . . 8 3 ∈ ℕ
116 nnq 12977 . . . . . . . 8 (3 ∈ ℕ → 3 ∈ ℚ)
117115, 116ax-mp 5 . . . . . . 7 3 ∈ ℚ
118 qmulcl 12982 . . . . . . 7 ((3 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (3 · 𝐴) ∈ ℚ)
119117, 7, 118sylancr 586 . . . . . 6 (𝜑 → (3 · 𝐴) ∈ ℚ)
1201193cubeslem1 42104 . . . . 5 (𝜑 → 0 < ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)))
121120gt0ne0d 11809 . . . 4 (𝜑 → ((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) ≠ 0)
122 3ne0 12349 . . . . 5 3 ≠ 0
123122a1i 11 . . . 4 (𝜑 → 3 ≠ 0)
124114, 3, 121, 123mulne0d 11897 . . 3 (𝜑 → (((((3 · 𝐴) + 1)↑2) − (3 · 𝐴)) · 3) ≠ 0)
125108, 124eqnetrd 3005 . 2 (𝜑 → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0)
126125neneqd 2942 1 (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  wne 2937  (class class class)co 7420  cc 11137  cr 11138  0cc0 11139  1c1 11140   + caddc 11142   · cmul 11144  cmin 11475  cn 12243  2c2 12298  3c3 12299  0cn0 12503  cq 12963  cexp 14059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-q 12964  df-seq 14000  df-exp 14060
This theorem is referenced by:  3cubeslem4  42109  3cubes  42110
  Copyright terms: Public domain W3C validator