| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > selvcllem2 | Structured version Visualization version GIF version | ||
| Description: 𝐷 is a ring homomorphism. (Contributed by SN, 15-Dec-2023.) |
| Ref | Expression |
|---|---|
| selvcllem2.u | ⊢ 𝑈 = (𝐼 mPoly 𝑅) |
| selvcllem2.t | ⊢ 𝑇 = (𝐽 mPoly 𝑈) |
| selvcllem2.c | ⊢ 𝐶 = (algSc‘𝑇) |
| selvcllem2.d | ⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) |
| selvcllem2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| selvcllem2.j | ⊢ (𝜑 → 𝐽 ∈ 𝑊) |
| selvcllem2.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Ref | Expression |
|---|---|
| selvcllem2 | ⊢ (𝜑 → 𝐷 ∈ (𝑅 RingHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | selvcllem2.d | . 2 ⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) | |
| 2 | selvcllem2.u | . . . . . . 7 ⊢ 𝑈 = (𝐼 mPoly 𝑅) | |
| 3 | selvcllem2.t | . . . . . . 7 ⊢ 𝑇 = (𝐽 mPoly 𝑈) | |
| 4 | selvcllem2.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 5 | selvcllem2.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ 𝑊) | |
| 6 | selvcllem2.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 7 | 2, 3, 4, 5, 6 | selvcllem1 42572 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ AssAlg) |
| 8 | selvcllem2.c | . . . . . . 7 ⊢ 𝐶 = (algSc‘𝑇) | |
| 9 | eqid 2730 | . . . . . . 7 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 10 | 8, 9 | asclrhm 21806 | . . . . . 6 ⊢ (𝑇 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑇) RingHom 𝑇)) |
| 11 | 7, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((Scalar‘𝑇) RingHom 𝑇)) |
| 12 | 2 | mplassa 21938 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑈 ∈ AssAlg) |
| 13 | 4, 6, 12 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ AssAlg) |
| 14 | 3, 5, 13 | mplsca 21929 | . . . . . 6 ⊢ (𝜑 → 𝑈 = (Scalar‘𝑇)) |
| 15 | 14 | oveq1d 7405 | . . . . 5 ⊢ (𝜑 → (𝑈 RingHom 𝑇) = ((Scalar‘𝑇) RingHom 𝑇)) |
| 16 | 11, 15 | eleqtrrd 2832 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝑈 RingHom 𝑇)) |
| 17 | eqid 2730 | . . . . . 6 ⊢ (algSc‘𝑈) = (algSc‘𝑈) | |
| 18 | eqid 2730 | . . . . . 6 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 19 | 17, 18 | asclrhm 21806 | . . . . 5 ⊢ (𝑈 ∈ AssAlg → (algSc‘𝑈) ∈ ((Scalar‘𝑈) RingHom 𝑈)) |
| 20 | 13, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (algSc‘𝑈) ∈ ((Scalar‘𝑈) RingHom 𝑈)) |
| 21 | rhmco 20417 | . . . 4 ⊢ ((𝐶 ∈ (𝑈 RingHom 𝑇) ∧ (algSc‘𝑈) ∈ ((Scalar‘𝑈) RingHom 𝑈)) → (𝐶 ∘ (algSc‘𝑈)) ∈ ((Scalar‘𝑈) RingHom 𝑇)) | |
| 22 | 16, 20, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐶 ∘ (algSc‘𝑈)) ∈ ((Scalar‘𝑈) RingHom 𝑇)) |
| 23 | 2, 4, 6 | mplsca 21929 | . . . 4 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑈)) |
| 24 | 23 | oveq1d 7405 | . . 3 ⊢ (𝜑 → (𝑅 RingHom 𝑇) = ((Scalar‘𝑈) RingHom 𝑇)) |
| 25 | 22, 24 | eleqtrrd 2832 | . 2 ⊢ (𝜑 → (𝐶 ∘ (algSc‘𝑈)) ∈ (𝑅 RingHom 𝑇)) |
| 26 | 1, 25 | eqeltrid 2833 | 1 ⊢ (𝜑 → 𝐷 ∈ (𝑅 RingHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 Scalarcsca 17230 CRingccrg 20150 RingHom crh 20385 AssAlgcasa 21766 algSccascl 21768 mPoly cmpl 21822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-lmod 20775 df-lss 20845 df-assa 21769 df-ascl 21771 df-psr 21825 df-mpl 21827 |
| This theorem is referenced by: selvcllem3 42574 selvcllem4 42576 selvadd 42583 selvmul 42584 |
| Copyright terms: Public domain | W3C validator |