![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpexp1i | Structured version Visualization version GIF version |
Description: Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.) |
Ref | Expression |
---|---|
rpexp1i | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12555 | . . 3 ⊢ (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0)) | |
2 | rpexp 16769 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (((𝐴↑𝑀) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)) | |
3 | 2 | biimprd 248 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) |
4 | 3 | 3expa 1118 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) |
5 | simpr 484 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0) | |
6 | 5 | oveq2d 7464 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴↑𝑀) = (𝐴↑0)) |
7 | zcn 12644 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
8 | 7 | ad2antrr 725 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → 𝐴 ∈ ℂ) |
9 | 8 | exp0d 14190 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴↑0) = 1) |
10 | 6, 9 | eqtrd 2780 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴↑𝑀) = 1) |
11 | 10 | oveq1d 7463 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴↑𝑀) gcd 𝐵) = (1 gcd 𝐵)) |
12 | 1gcd 16580 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → (1 gcd 𝐵) = 1) | |
13 | 12 | ad2antlr 726 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → (1 gcd 𝐵) = 1) |
14 | 11, 13 | eqtrd 2780 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴↑𝑀) gcd 𝐵) = 1) |
15 | 14 | a1d 25 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) |
16 | 4, 15 | jaodan 958 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑀 ∈ ℕ ∨ 𝑀 = 0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) |
17 | 1, 16 | sylan2b 593 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) |
18 | 17 | 3impa 1110 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 ↑cexp 14112 gcd cgcd 16540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-prm 16719 |
This theorem is referenced by: rpexp12i 16771 gexexlem 19894 ablfac1lem 20112 ablfac1eu 20117 pgpfac1lem2 20119 2logb9irr 26856 perfectlem1 27291 perfectlem2 27292 rpvmasumlem 27549 dchrisum0flblem2 27571 aks6d1c1 42073 perfectALTVlem1 47595 perfectALTVlem2 47596 |
Copyright terms: Public domain | W3C validator |