MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcn2 Structured version   Visualization version   GIF version

Theorem subcn2 15477
Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
subcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem subcn2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 negcl 11401 . . 3 (𝐶 ∈ ℂ → -𝐶 ∈ ℂ)
2 addcn2 15476 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ -𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴))
31, 2syl3an3 1165 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴))
4 negcl 11401 . . . . . . . . 9 (𝑣 ∈ ℂ → -𝑣 ∈ ℂ)
5 fvoveq1 7380 . . . . . . . . . . . . 13 (𝑤 = -𝑣 → (abs‘(𝑤 − -𝐶)) = (abs‘(-𝑣 − -𝐶)))
65breq1d 5115 . . . . . . . . . . . 12 (𝑤 = -𝑣 → ((abs‘(𝑤 − -𝐶)) < 𝑧 ↔ (abs‘(-𝑣 − -𝐶)) < 𝑧))
76anbi2d 629 . . . . . . . . . . 11 (𝑤 = -𝑣 → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧)))
8 oveq2 7365 . . . . . . . . . . . . 13 (𝑤 = -𝑣 → (𝑢 + 𝑤) = (𝑢 + -𝑣))
98fvoveq1d 7379 . . . . . . . . . . . 12 (𝑤 = -𝑣 → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) = (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))))
109breq1d 5115 . . . . . . . . . . 11 (𝑤 = -𝑣 → ((abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴 ↔ (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴))
117, 10imbi12d 344 . . . . . . . . . 10 (𝑤 = -𝑣 → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
1211rspcv 3577 . . . . . . . . 9 (-𝑣 ∈ ℂ → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
134, 12syl 17 . . . . . . . 8 (𝑣 ∈ ℂ → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
1413adantl 482 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
15 simpr 485 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝑣 ∈ ℂ)
16 simpll3 1214 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝐶 ∈ ℂ)
1715, 16neg2subd 11529 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (-𝑣 − -𝐶) = (𝐶𝑣))
1817fveq2d 6846 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(-𝑣 − -𝐶)) = (abs‘(𝐶𝑣)))
1916, 15abssubd 15338 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(𝐶𝑣)) = (abs‘(𝑣𝐶)))
2018, 19eqtrd 2776 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(-𝑣 − -𝐶)) = (abs‘(𝑣𝐶)))
2120breq1d 5115 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((abs‘(-𝑣 − -𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < 𝑧))
2221anbi2d 629 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧)))
23 negsub 11449 . . . . . . . . . . . 12 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + -𝑣) = (𝑢𝑣))
2423adantll 712 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (𝑢 + -𝑣) = (𝑢𝑣))
25 simpll2 1213 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝐵 ∈ ℂ)
2625, 16negsubd 11518 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (𝐵 + -𝐶) = (𝐵𝐶))
2724, 26oveq12d 7375 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((𝑢 + -𝑣) − (𝐵 + -𝐶)) = ((𝑢𝑣) − (𝐵𝐶)))
2827fveq2d 6846 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) = (abs‘((𝑢𝑣) − (𝐵𝐶))))
2928breq1d 5115 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴 ↔ (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
3022, 29imbi12d 344 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3114, 30sylibd 238 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3231ralrimdva 3151 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3332ralimdva 3164 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∀𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3433reximdv 3167 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∃𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3534reximdv 3167 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
363, 35mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049   + caddc 11054   < clt 11189  cmin 11385  -cneg 11386  +crp 12915  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by:  climsub  15516  rlimsub  15527  subcn  24229
  Copyright terms: Public domain W3C validator