MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcn2 Structured version   Visualization version   GIF version

Theorem subcn2 15572
Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
subcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem subcn2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 negcl 11491 . . 3 (𝐶 ∈ ℂ → -𝐶 ∈ ℂ)
2 addcn2 15571 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ -𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴))
31, 2syl3an3 1163 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴))
4 negcl 11491 . . . . . . . . 9 (𝑣 ∈ ℂ → -𝑣 ∈ ℂ)
5 fvoveq1 7443 . . . . . . . . . . . . 13 (𝑤 = -𝑣 → (abs‘(𝑤 − -𝐶)) = (abs‘(-𝑣 − -𝐶)))
65breq1d 5158 . . . . . . . . . . . 12 (𝑤 = -𝑣 → ((abs‘(𝑤 − -𝐶)) < 𝑧 ↔ (abs‘(-𝑣 − -𝐶)) < 𝑧))
76anbi2d 629 . . . . . . . . . . 11 (𝑤 = -𝑣 → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧)))
8 oveq2 7428 . . . . . . . . . . . . 13 (𝑤 = -𝑣 → (𝑢 + 𝑤) = (𝑢 + -𝑣))
98fvoveq1d 7442 . . . . . . . . . . . 12 (𝑤 = -𝑣 → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) = (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))))
109breq1d 5158 . . . . . . . . . . 11 (𝑤 = -𝑣 → ((abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴 ↔ (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴))
117, 10imbi12d 344 . . . . . . . . . 10 (𝑤 = -𝑣 → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
1211rspcv 3605 . . . . . . . . 9 (-𝑣 ∈ ℂ → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
134, 12syl 17 . . . . . . . 8 (𝑣 ∈ ℂ → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
1413adantl 481 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
15 simpr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝑣 ∈ ℂ)
16 simpll3 1212 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝐶 ∈ ℂ)
1715, 16neg2subd 11619 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (-𝑣 − -𝐶) = (𝐶𝑣))
1817fveq2d 6901 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(-𝑣 − -𝐶)) = (abs‘(𝐶𝑣)))
1916, 15abssubd 15433 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(𝐶𝑣)) = (abs‘(𝑣𝐶)))
2018, 19eqtrd 2768 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(-𝑣 − -𝐶)) = (abs‘(𝑣𝐶)))
2120breq1d 5158 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((abs‘(-𝑣 − -𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < 𝑧))
2221anbi2d 629 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧)))
23 negsub 11539 . . . . . . . . . . . 12 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + -𝑣) = (𝑢𝑣))
2423adantll 713 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (𝑢 + -𝑣) = (𝑢𝑣))
25 simpll2 1211 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝐵 ∈ ℂ)
2625, 16negsubd 11608 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (𝐵 + -𝐶) = (𝐵𝐶))
2724, 26oveq12d 7438 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((𝑢 + -𝑣) − (𝐵 + -𝐶)) = ((𝑢𝑣) − (𝐵𝐶)))
2827fveq2d 6901 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) = (abs‘((𝑢𝑣) − (𝐵𝐶))))
2928breq1d 5158 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴 ↔ (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
3022, 29imbi12d 344 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3114, 30sylibd 238 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3231ralrimdva 3151 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3332ralimdva 3164 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∀𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3433reximdv 3167 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∃𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3534reximdv 3167 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
363, 35mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3058  wrex 3067   class class class wbr 5148  cfv 6548  (class class class)co 7420  cc 11137   + caddc 11142   < clt 11279  cmin 11475  -cneg 11476  +crp 13007  abscabs 15214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216
This theorem is referenced by:  climsub  15611  rlimsub  15622  subcn  24795
  Copyright terms: Public domain W3C validator