MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcn2 Structured version   Visualization version   GIF version

Theorem subcn2 15611
Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
subcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem subcn2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 negcl 11482 . . 3 (𝐶 ∈ ℂ → -𝐶 ∈ ℂ)
2 addcn2 15610 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ -𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴))
31, 2syl3an3 1165 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴))
4 negcl 11482 . . . . . . . . 9 (𝑣 ∈ ℂ → -𝑣 ∈ ℂ)
5 fvoveq1 7428 . . . . . . . . . . . . 13 (𝑤 = -𝑣 → (abs‘(𝑤 − -𝐶)) = (abs‘(-𝑣 − -𝐶)))
65breq1d 5129 . . . . . . . . . . . 12 (𝑤 = -𝑣 → ((abs‘(𝑤 − -𝐶)) < 𝑧 ↔ (abs‘(-𝑣 − -𝐶)) < 𝑧))
76anbi2d 630 . . . . . . . . . . 11 (𝑤 = -𝑣 → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧)))
8 oveq2 7413 . . . . . . . . . . . . 13 (𝑤 = -𝑣 → (𝑢 + 𝑤) = (𝑢 + -𝑣))
98fvoveq1d 7427 . . . . . . . . . . . 12 (𝑤 = -𝑣 → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) = (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))))
109breq1d 5129 . . . . . . . . . . 11 (𝑤 = -𝑣 → ((abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴 ↔ (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴))
117, 10imbi12d 344 . . . . . . . . . 10 (𝑤 = -𝑣 → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
1211rspcv 3597 . . . . . . . . 9 (-𝑣 ∈ ℂ → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
134, 12syl 17 . . . . . . . 8 (𝑣 ∈ ℂ → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
1413adantl 481 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
15 simpr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝑣 ∈ ℂ)
16 simpll3 1215 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝐶 ∈ ℂ)
1715, 16neg2subd 11611 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (-𝑣 − -𝐶) = (𝐶𝑣))
1817fveq2d 6880 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(-𝑣 − -𝐶)) = (abs‘(𝐶𝑣)))
1916, 15abssubd 15472 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(𝐶𝑣)) = (abs‘(𝑣𝐶)))
2018, 19eqtrd 2770 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(-𝑣 − -𝐶)) = (abs‘(𝑣𝐶)))
2120breq1d 5129 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((abs‘(-𝑣 − -𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < 𝑧))
2221anbi2d 630 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧)))
23 negsub 11531 . . . . . . . . . . . 12 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + -𝑣) = (𝑢𝑣))
2423adantll 714 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (𝑢 + -𝑣) = (𝑢𝑣))
25 simpll2 1214 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝐵 ∈ ℂ)
2625, 16negsubd 11600 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (𝐵 + -𝐶) = (𝐵𝐶))
2724, 26oveq12d 7423 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((𝑢 + -𝑣) − (𝐵 + -𝐶)) = ((𝑢𝑣) − (𝐵𝐶)))
2827fveq2d 6880 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) = (abs‘((𝑢𝑣) − (𝐵𝐶))))
2928breq1d 5129 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴 ↔ (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
3022, 29imbi12d 344 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3114, 30sylibd 239 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3231ralrimdva 3140 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3332ralimdva 3152 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∀𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3433reximdv 3155 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∃𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3534reximdv 3155 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
363, 35mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127   + caddc 11132   < clt 11269  cmin 11466  -cneg 11467  +crp 13008  abscabs 15253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255
This theorem is referenced by:  climsub  15650  rlimsub  15660  subcn  24806
  Copyright terms: Public domain W3C validator