Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > probvalrnd | Structured version Visualization version GIF version |
Description: The value of a probability is a real number. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
Ref | Expression |
---|---|
probmeasd.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
probvalrnd.1 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑃) |
Ref | Expression |
---|---|
probvalrnd | ⊢ (𝜑 → (𝑃‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitssre 12945 | . 2 ⊢ (0[,]1) ⊆ ℝ | |
2 | probmeasd.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
3 | probvalrnd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑃) | |
4 | prob01 31913 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ∈ (0[,]1)) | |
5 | 2, 3, 4 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝑃‘𝐴) ∈ (0[,]1)) |
6 | 1, 5 | sseldi 3893 | 1 ⊢ (𝜑 → (𝑃‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 dom cdm 5529 ‘cfv 6341 (class class class)co 7157 ℝcr 10588 0cc0 10589 1c1 10590 [,]cicc 12796 Probcprb 31907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-inf2 9151 ax-ac2 9937 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-pre-sup 10667 ax-addf 10668 ax-mulf 10669 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-iin 4890 df-disj 5003 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-se 5489 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-isom 6350 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-of 7412 df-om 7587 df-1st 7700 df-2nd 7701 df-supp 7843 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-2o 8120 df-er 8306 df-map 8425 df-pm 8426 df-ixp 8494 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-fsupp 8881 df-fi 8922 df-sup 8953 df-inf 8954 df-oi 9021 df-dju 9377 df-card 9415 df-acn 9418 df-ac 9590 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-7 11756 df-8 11757 df-9 11758 df-n0 11949 df-z 12035 df-dec 12152 df-uz 12297 df-q 12403 df-rp 12445 df-xneg 12562 df-xadd 12563 df-xmul 12564 df-ioo 12797 df-ioc 12798 df-ico 12799 df-icc 12800 df-fz 12954 df-fzo 13097 df-fl 13225 df-mod 13301 df-seq 13433 df-exp 13494 df-fac 13698 df-bc 13727 df-hash 13755 df-shft 14488 df-cj 14520 df-re 14521 df-im 14522 df-sqrt 14656 df-abs 14657 df-limsup 14890 df-clim 14907 df-rlim 14908 df-sum 15105 df-ef 15483 df-sin 15485 df-cos 15486 df-pi 15488 df-struct 16558 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-starv 16653 df-sca 16654 df-vsca 16655 df-ip 16656 df-tset 16657 df-ple 16658 df-ds 16660 df-unif 16661 df-hom 16662 df-cco 16663 df-rest 16769 df-topn 16770 df-0g 16788 df-gsum 16789 df-topgen 16790 df-pt 16791 df-prds 16794 df-ordt 16847 df-xrs 16848 df-qtop 16853 df-imas 16854 df-xps 16856 df-mre 16930 df-mrc 16931 df-acs 16933 df-ps 17891 df-tsr 17892 df-plusf 17932 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-mhm 18037 df-submnd 18038 df-grp 18187 df-minusg 18188 df-sbg 18189 df-mulg 18307 df-subg 18358 df-cntz 18529 df-cmn 18990 df-abl 18991 df-mgp 19323 df-ur 19335 df-ring 19382 df-cring 19383 df-subrg 19616 df-abv 19671 df-lmod 19719 df-scaf 19720 df-sra 20027 df-rgmod 20028 df-psmet 20173 df-xmet 20174 df-met 20175 df-bl 20176 df-mopn 20177 df-fbas 20178 df-fg 20179 df-cnfld 20182 df-top 21609 df-topon 21626 df-topsp 21648 df-bases 21661 df-cld 21734 df-ntr 21735 df-cls 21736 df-nei 21813 df-lp 21851 df-perf 21852 df-cn 21942 df-cnp 21943 df-haus 22030 df-tx 22277 df-hmeo 22470 df-fil 22561 df-fm 22653 df-flim 22654 df-flf 22655 df-tmd 22787 df-tgp 22788 df-tsms 22842 df-trg 22875 df-xms 23037 df-ms 23038 df-tms 23039 df-nm 23299 df-ngp 23300 df-nrg 23302 df-nlm 23303 df-ii 23593 df-cncf 23594 df-limc 24580 df-dv 24581 df-log 25262 df-esum 31529 df-siga 31610 df-meas 31697 df-prob 31908 |
This theorem is referenced by: probtotrnd 31925 dstrvprob 31971 dstfrvinc 31976 dstfrvclim1 31977 |
Copyright terms: Public domain | W3C validator |